欢迎您访问教学资源网(www.jxzy.wang)
首页 > 考试试卷  > 数学试卷 > 2021-2022学年湖北省黄石市五校联考八年级(下)期中数学试卷

2021-2022学年湖北省黄石市五校联考八年级(下)期中数学试卷

网友 分享 时间: 加入收藏 我要投稿 点赞
试卷题目
1.下列二次根式是最简二次根式的是(  )
  • A.
    4
    3
  • B.
    1.5
  • C.
    5
  • D.
    40

2.2、5、m是某三角形三边的长,则
(m-3)2
+
(m-7)2
等于(  )
  • A. 2m-10
  • B. 10-2m
  • C. 10
  • D. 4
3.下列说法正确的是(  )
  • A. 对角线互相垂直且相等的四边形是正方形
  • B. 对角线相等的平行四边形是菱形
  • C. 有一条对角线平分一组对角的四边形是菱形
  • D. 对角线互相垂直平分的四边形是菱形
4.设6-
10
的整数部分为a,小数部分为b,则(2a+
10
)b的值是(  )
  • A. 6
  • B. 2
    10
  • C. 12
  • D. 9
    10

5.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A′B ′C ′,则四边形ABC ′A′的面积是(  )

  • A. 15
  • B. 18
  • C. 20
  • D. 22
6.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为(  )

  • A. 72
  • B. 24
  • C. 48
  • D. 96
7.如图,D、E、F分别是△ABC各边中点,则以下说法错误的是(  )

  • A. △BDE和△DCF的面积相等
  • B. 四边形AEDF是平行四边形
  • C. 若AB=BC,则四边形AEDF是菱形
  • D. 若∠A=90°,则四边形AEDF是矩形
8.如图,图中有一长、宽、高分别为5cm,4cm,3cm的木箱,在它里面放入一根细木条(木条的粗细,变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是(  )

  • A.
    41
    cm
  • B.
    34
    cm
  • C. 5
    2
    cm
  • D. 5
    3
    cm
9.如图,四边形ABCD是菱形,BD=4
2
,AD=2
6
,点E是CD边上的一动点,过点E作EF⊥OC于点F,EG⊥OD于点G,连接FG,则FG的最小值为(  )

  • A.
    5
    2
  • B.
    12
    5
  • C.
    4
    3
    3
  • D.
    6

10.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2
5

以上结论中,你认为正确的有(  )个.

  • A. 1
  • B. 2
  • C. 3
  • D. 4
11.计算 (
10
+1)(
10
-1)(
10
+1)(
10
-1)的结果等于       
12.已知a,b满足等式a2+6a+9+
b-
1
3
=0,则a2021b2022=    
13.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,AC=6,OE∥AB,交BC于点E,则OE的长为     

14.如图,平行四边形ABCD中,AC、BD交于O,分别以点A和点C为圆心,大于
1
2
AC的长为半径作弧,两弧相交于M、N两点,作直线MN,交AB于点E,交CD于点F,连接CE,若AD=6,△BCE的周长为14,则CD的长为       

15.已知x+y=-5,xy=4,则
y
x
+
x
y
=    
16.如图,在四边形ABCD中,AB=BC=3,CD=
7
,DA=5,∠B=90°,则∠BCD的度数       

17.在矩形ABCD中,AB=2cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD交于点E,且DE=3cm,则矩形ABCD的面积为       cm2
18.如图,正方形ABCD中,点E在边AD上,点F在边CD上,若∠BEF=∠EBC,AB=3AE,则下列结论:
①DF=FC;
②AE+DF=EF;
③∠BFE=∠BFC;
④∠ABE+∠CBF=45°;
⑤∠DEF+∠CBF=∠BFC;
⑥DF:DE:EF=3:4:5;
⑦BF:EF=3
5
:5.
其中结论正确的序号有      

19.(1)计算:(-
1
2
)-1+|1-
2
|-
8

(2)先化简
x2-4
x2-2x
÷(
x2+4x
x
-
4
-x
),再求值,其中x=
2
-2.
20.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.求阴影部分的面积.

21.如图,点C是BE的中点,四边形ABCD是平行四边形.
(1)求证:四边形ACED是平行四边形;
(2)如果AB=AE,求证:四边形ACED是矩形.

22.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.
(1)A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?

23.问题解决:如图1,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF于点G.

(1)求证:四边形ABCD是正方形;
(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.
(3)类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE=AF,∠AED=60°,AE=6,BF=2,求DE的长.
24.如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE分别长acm、bcm,满足(a-3)2+|2a+b-9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D.设运动时间为ts.
(1)a=      cm,b=      cm
(2)t为何值时,EP把四边形BCDE的周长平分?
(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2

25.将正方形ABCD放置在平面直角坐标系中,B与原点重合,点A的坐标为(0,a),点E的坐标为(b,0),并且实数a,b使式子b=
12-2a
+
a-6
+3成立.
(1)直接写出点D、E的坐标:D      ,E      
(2)∠AEF=90°,且EF交正方形外角的平分线CF于点F.
①如图①,求证AE=EF;
②如图②,连接AF交DC于点G,作GM∥AD交AE于点M,作EN∥AB交AF于点N,连接MN,求四边形MNGE的面积.
(3)如图③,连接正方形ABCD的对角线AC,若点P在AC上,点Q在CD上,且AP=CQ,请直接写出(BP+BQ)2的最小值      

221381
领取福利

微信扫码领取福利

2021-2022学年湖北省黄石市五校联考八年级(下)期中数学试卷

微信扫码分享