2024年暑假新八年级数学自学预习精品讲义
第07讲 等边三角形的性质与判定(3种题型)
了解等边三角形的有关概念,探索并掌握性质及判定方法。
一.等边三角形的性质
(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.
①它可以作为判定一个三角形是否为等边三角形的方法;
②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.
(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.
二.等边三角形的判定
(1)由定义判定:三条边都相等的三角形是等边三角形.
(2)判定定理1:三个角都相等的三角形是等边三角形.
(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.
说明:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.
三.等边三角形的判定与性质
(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.
(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.
(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.
一.等边三角形的性质(共9小题)
1.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为( )
A.3 B.4.5 C.6 D.7.5
2.如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是( )
A.1cm B.2cm C.3cm D.4cm
3.如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,则∠PAB的度数是( )
A.10° B.15° C.20° D.25°
4.如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD,DF⊥BE,垂足为点F.
(1)求证:CE=2CF;
(2)若CF=2,求△ABC的周长.
5.如图,△ABC是等边三角形,AD是BC边上的中线,点E在AD上,且DE=1/2BC,则∠AFE=( )
A.100° B.105° C.110° D.115°
6.如图,在等边△ABC中,D为BC边上的中点,以A为圆心,AD为半径画弧,与AC边交点为E,则∠ADE的度数为( )
A.60° B.105° C.75° D.15°
7.如图,在△ABC中,BC的垂直平分线分别交BC,AB于点E,F,连接CF,若△AFC是等边三角形,则∠B的度数是( )
A.60° B.45° C.30° D.15°
8.如图,△ABC是等边三角形,D,E分别是AC,BC上的点,若AE=AD,∠CED=25°,则∠BAE=________°.
9.阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).
(1)类比与推理
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(2)理解与应用
△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等? (填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=________.若不存在,请说明理由.
二.等边三角形的判定(共6小题)
10.若一个三角形有两条边相等,且有一内角为60°,那么这个三角形一定为( )
A.钝角三角形 B.等腰三角形 C.直角三角形 D.正三角形
11.如图所示,在等腰△ABC中,AB=AC,AF为BC的中线,D为AF上的一点,且BD的垂直平分线过点C并交BD于E.
求证:△BCD是等边三角形.
12.三角形的三边长a,b,c满足(a﹣b)4+(b﹣c)2+|c﹣a|=0,那么这个三角形一定是( )
A.直角三角形 B.等边三角形 C.等腰非等边三角形 D.钝角三角形
13.在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.
(1)如图1,若BQ=6,PQ∥AC,求t的值;
(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?
14.如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.
(1)求∠C的度数;
(2)求证:△ADE是等边三角形.
15.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
三.等边三角形的判定与性质(共9小题)
16.一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距( )
A.100海里 B.80海里 C.60海里 D.40海里
17.如图,△ABC为等边三角形,BD⊥AC交AC于点D,DE∥BC交AB于点E.
(1)求证:△ADE是等边三角形.
(2)求证:AE=1/2AB.
18.如图,在四边形ABCD中,AB=AD,CB=CD,∠A=60°,点E为AD上一点,连接BD,CE交于点F,CE∥AB.
(1)判断△DEF的形状,并说明理由;
(2)若AD=12,CE=8,求CF的长.
19.已知等边△ABC的边长为5,点D为直线BC上一点,BD=1,DE∥AB交直线AC于点E,则DE的长为________.
20.如图所示,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B以2cm/s的速度移动,点Q从点B出发沿BA边向点A以5cm/s的速度移动.P,Q两点同时出发,它们移动的时间为ts.
(1)你能用含的式子表示BP和BQ的长度吗?请你表示出来.
(2)请问几秒后,△PBQ第一次为等边三角形?
(3)若P,Q两点分别从C,B两点同时出发,并且按顺时针方向沿△ABC三边运动,请问经过几秒后点P与点Q第一次在△ABC的哪条边上相遇?
21.如图,已知点D、E在△ABC的边BC上,AB=AC,AD=AE.
(1)求证:BD=CE;
(2)若AD=BD=DE=CE,求∠BAE的度数.
22.已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形.
23.数学课上,张老师举了下面的例题:
例1:等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)
例2:等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)
张老师启发同学们进行变式,小敏编的题目如下:
变式题:等腰三角形ABC中,∠A=80°,求∠B的度数.
(1)请你解答上面的变式题.
(2)请继续探索,完成下面问题:等腰三角形ABC中,∠A=60°,则∠B的度数为________.
(3)根据以上探索,我们发现,∠A的度数不同,得到的∠B度数的个数也可能不同.请你直接写出当∠A满足什么条件时,∠B能得到三个不同的度数.
24.已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.求证:
(1)AE=DB;
(2)△CMN为等边三角形.
一.选择题(共5小题)
1.下列命题不正确的是( )
A.等腰三角形的底角不能是钝角
B.等腰三角形不能是直角三角形
C.若一个三角形有三条对称轴,那么它一定是等边三角形
D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形
2.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是( )
A.平行 B.相交 C.垂直 D.平行、相交或垂直
3.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),按此方法,若点C的坐标为(2,m,m﹣2),则m=( )
A.2 B.3 C.4 D.6
4.在下列结论中:
(1)有一个外角是120°的等腰三角形是等边三角形
(2)有两个外角相等的等腰三角形是等边三角形
(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形
(4)三个外角都相等的三角形是等边三角形
其中正确的个数是( )
A.4个 B.3个 C.2个 D.1个
5.如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是( )
A.80° B.100° C.120° D.140°
二.填空题(共13小题)
6.已知△ABC中,AB=AC=6,∠C=60°,则BC=________.
7.如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC=________.
8.如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是________.
9.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=________.
10.等边三角形的每一个内角均为________度.
11.如图,CD是等边△ABC的中线,DE⊥AC,垂足为点E.若DE的长度为3cm,则点D到BC的距离为 cm.
12.如图,在一个池塘旁有一条笔直公路MN,池塘对面有一个建筑A,小明在公路一侧点B处测得∠ABN=60°,为了得到他与建筑物A之间的距离,小明沿公路MN继续向东走到点C处,测得∠ACB=60°,并测得他走了48米,则AB为________米.
13.如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=1,则AD的长为________.
14.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的序号是________.
15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=________°.
16.如图,若BD为等边△ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE=________.
17.如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=________.
18.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为________.
三.解答题(共8小题)
19.如图,等边△ABC中,BD是边AC上的高,延长BC到点E,使CE=CD,求证:BD=DE.
20.如图,P是在△ABC内一点,若∠PBC=∠PCB=10°,△APC是等边三角形.求∠ABP的度数.
21.如图,在等边三角形ABC中,BD⊥AC于D,延长BC到E,使CE=CD.判断△BDE的形状,并说明理由.
22.已知:如图,△ABC是等边三角形,点E在BC的延长线上,给出下列信息:①点D是AC的中点;②CE=CD;③DB=DE.请在上述3条信息中选择其中两条作为条件,其余的一条信息作为结论组成一个命题.试判断这个命题是否正确,并说明理由.你选择的条件是________、________,结论是________(只要填写序号).
23.如图,点D在等边△ABC的外部,连接AD、CD,AD=CD,过点D作DE∥AB交AC于点F,交BC于点E.
(1)判断△CEF的形状,并说明理由;
(2)连接BD,若BC=10,CF=4,求DE的长.
24.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.
(1)若∠1=50°,求∠2;
(2)连接DF,若DF∥BC,求证:∠1=∠3.
25.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.
(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
26.已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.求证:
(1)AE=DB;
(2)△CMN为等边三角形.