欢迎您访问教学资源网(www.jxzy.wang)
首页 > 考试试卷  > 数学试卷 > 九年级下册数学期末试卷附答案

九年级下册数学期末试卷附答案

网友 分享 时间: 加入收藏 我要投稿 点赞

九年级下册数学期末试卷附答案(最新)

我们要想取得理想的成绩,勤奋至关重要!只有勤奋学习,才能成就美好人生!勤奋出天才,这是一面永不褪色的旗帜,它永远激励我们不断追求、不断探索。下面小编为大家带来九年级下册数学期末试卷附答案,希望对您有所帮助!

九年级下册数学期末试卷附答案

一、选择题(每小题3分,共30分)

1.如图所示的三个矩形中,其中相似图形是(B)

A.甲与乙B.乙与丙C.甲与丙D.以上都不对

2.若函数y=m+2x的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是(A)

A.m<-2B.m<0C.m>-2D.m>0

3.点M(-sin60°,cos60°)关于x轴对称的点的坐标是(B)

A.(32,12)B.(-32,-12)C.(-32,12)D.(-12,-32)

4.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为(C)

A.30tanα米B.30sinα米C.30tanα米D.30cosα米

5.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是(C)

6.如图,点A,E,F,C在同一条直线上,AD∥BC,BE的延长线交AD于点G,且BG∥DF,则下列结论错误的是(C)

A.AGAD=AEAFB.AGAD=EGDFC.AEAC=AGADD.ADBC=DFBE

7.如图,反比例函数y1=k1x和正比例函数y2=k2x的图象交于A(-1,-3),B(1,3)两点,若k1x>k2x,则x的取值范围是(C)

A.-1<x<0b.-1<x<1< p="">

C.x<-1或0<x<1d.-1<x1

8.如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的面积为(B)

A.40cm2B.20cm2C.25cm2D.10cm2

9.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=cx的大致图象是(C)

10.若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OA∶O1A1=k(k为不等于0的常数),那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③ABA1B1=k;④扇形AOB与扇形A1O1B1的面积之比为k2.其中成立的个数为(D)

A.1个B.2个C.3个D.4个

二、填空题(每小题3分,共24分)

11.小明在操场上练习双杠,他发现双杠两横杠在地面上的影子的关系是平行.

12.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=5,sinA=45.

13.在平面直角坐标系中,△ABC顶点A的坐标为(3,2),若以原点O为位似中心,画△ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比等于12,则点A′的坐标为(6,4)或(-6,-4).

14.在Rt△ABC中,CA=CB,AB=92,点D在BC边上,连接AD,若tan∠CAD=13,则BD的长为6.

15.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为8π.

16.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为13.

17.如图,双曲线y=kx(k>0)与⊙O在第一象限内交于P,Q两点,分别过P,Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为4.

18.在平面直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=35,反比例函数y=kx(x>0)的图象经过AO的中点C,且与AB交于点D,则点D的坐标为(8,32).

提示:AB=OA•sin∠AOB=10×35=6,OB=OA2-AB2=102-62=8,AO的中点C的坐标为(4,3),把C(4,3)代入y=kx(x>0),得y=12x,当x=8,y=32,∴点D的坐标为(8,32).

三、解答题(共66分)

19.(6分)计算:(-1)2019-(12)-3+(cos68°)0+|33-8sin60°|.

解:原式=-1-8+1+|33-8×32|=-8+3.

20.(8分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于点E.求证:△ABD∽△CBE.

证明:在△ABC中,AB=AC,BD=CD,

∴AD⊥BC.

∵CE⊥AB,∴∠ADB=∠CEB=90°.

∵∠B=∠B,∴△ABD∽△CBE.

21.(12分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.

(1)求函数y=mx和y=kx+b的解析式;

(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=mx的图象上一点P,使得S△POC=9.

解:(1)把点A(4,2)代入反比例函数y=mx可得m=8,

∴反比例函数的解析式为y=8x.

∵OB=6,∴B(0,-6).

把点A(4,2),B(0,-6)代入一次函数y=kx+b,得

2=4k+b,-6=b,解得k=2,b=-6.

∴一次函数的解析式为y=2x-6.

(2)在y=2x-6中,令y=0,则x=3,即C(3,0),

∴CO=3.

设P(a,8a),则由S△POC=9,可得

12×3×8a=9.解得a=43.

∴P(43,6).

22.(12分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:

第1天第2天第3天第4天

售价x(元/双)150200250300

销售量y(双)40302420

(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;

(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?

解:(1)由表中数据,得xy=6000,∴y=6000x.∴y是x的反比例函数,所求函数关系式为y=6000x.

(2)由题意,得(x-120)y=3000,

把y=6000x代入,得(x-120)•6000x=3000.

解得x=240.

经检验,x=240是原方程的根.

答:若商场计划每天的销售利润为3000元,则其单价应定为240元.

23.(14分)如图是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732).

解:由题意,得AH=10米,BC=10米.

在Rt△ABC中,∠CAB=45°,

∴AB=BC=10米.

在Rt△DBC中,∠CDB=30°,

∴DB=BCtan∠CDB=103米.

∴DH=AH-AD=AH-(DB-AB)=10-(103-10)=20-103≈2.7(米).

∵2.7米<3米,

∴该建筑物需要拆除.

24.(14分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.

(1)求证:AE与⊙O相切;

(2)当BC=4,cosC=13时,求⊙O的半径.

解:(1)证明:连接OM,则OM=OB.∴∠OBM=∠OMB.

∵BM平分∠ABC,

∴∠OBM=∠GBM.

∴∠OMB=∠GBM.

∴OM∥BC.∴∠AMO=∠AEB.

在△ABC中,AB=AC,AE是角平分线,

∴AE⊥BC.

∴∠AEB=90°.∴∠AMO=90°.∴OM⊥AE.

又∵OM是⊙O的半径,∴AE与⊙O相切.

(2)在△ABC中,AB=AC,AE是角平分线,

∴BE=12BC,∠ABC=∠C.

∵BC=4,cosC=13,∴BE=2,cos∠ABC=13.

在△ABE中,∠AEB=90°,∴AB=BEcos∠ABC=6.

设⊙O的半径为r,则AO=6-r,

∵OM∥BC,∴△AOM∽△ABE.∴OMBE=AOAB.

∴r2=6-r6.解得r=32.

∴⊙O的半径为32.

学好数学的几条建议

1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。

2、要有端正的学习态度。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。

3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!

4、要注重学习的技巧和方法。不要死记硬背一些公式、定律,而是要靠分析、理解,做到灵活运用,举一反三。特别要重视课堂上学习新知识和分析练习的时候,不能思想开小差,管自己做与学习无关的事情。注意力一定要高度集中,并积极思考,遇到不懂题目时要及时做好记录,课后和同学进行探讨,做好查漏补缺。

5、要有善于观察、阅读的好习惯。只要我们做数学的有心人,细心观察、思考,我们就会发现生活中到处都有数学。除此之外,同学们还可以从多方面、多种渠道来学习数学。如:从电视、网络、《小学生数学报》、《数学小灵通》等报刊杂志上学习数学,不断扩展知识面。

6、要有自己的观点。现在,大部分同学遇到一些较难或不清楚的问题时,就不加思考,轻易放弃了,有的干脆听从老师、父母、书本的意见。即使是老师、长辈、书籍等权威,也不是没有一点儿失误的,我们要重视权威的意见,但绝不等于不加思考的认同。

7、要学会概括和积累。及时总结解题规律,特别是积累一些经典和特殊的题目。这样既可以学得轻松,又可以提高学习的效率和质量。

8、要重视其他学科的学习。因为各个学科之间是有着密切的联系,它对学习数学有促进的作用。如:学好语文对数学题目的理解有很大的帮助等等。

怎样学好数学的技巧

1、认真“听”的习惯。

为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

2、积极“想”的习惯。

积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

3、仔细“审”的习惯。

审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。

4、独立“做”的习惯。

练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。

5、善于“问”的习惯。

俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。

6、勇于“辩”的习惯。

讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。

7、力求“断”的习惯。

民族的创新能力是综合国力的重要表现,因此新大纲强调在数学教学中应重视培养学生的创新意识。教师应积极鼓励学生思考问题时不受常规思路局限,乐于和善于发现新问题,能够从不同角度诠释数学命题,能用不同方法解答问题,能创造性地操作或制作学具与模型。

8、提早“学”的习惯。

从小学生认识规律看,要获得良好的学习成绩,必须牢牢抓住预习、听课、作业、复习四个基本环节。其中,课前预习教材可以帮助学生了解新知识的要点、重点、发现疑难,从而可以在课堂内重点解决,掌握听课的主动权,使听课具有针对性。随着年级的升高、预习的重要性更加突出。

9、反复“查”的习惯。

培养学生检查的能力和习惯,是提高数学学习质量的重要措施,是培养学生自觉性和责任感的必要过程,这也是新大纲明确了的教学要求。练习后,学生一般应从“是否符合题意,计算是否合理、灵活、正确,应用题、几何题的解答方法是否科学”等几个方面反复检查验算。

10、客观“评”的习惯。

学生客观地评价自己和他人在学习活动中的表现,本身就是一种高水平的学习。只有客观地评价自己、评价他人,才能评出自信,评出不足,从而达到正视自我、不断反思、追求进步的目的,逐步形成辩证唯物主义认识观。

11、经常“动”的习惯。

数学知识具有高度的抽象性,小学生的思维带有明显的具体性,所以新大纲强调应重视从学生的生活经验中学习理解数学,加强实践能力的培养。在教学中,教师应强调学生手脑并用,以动促思,对难以理解的概念通过举实例加以解决,对较复杂的应用题通过画图找到正确的解答方法,对模糊的几何知识通过剪剪拼拼或实验达到投石问路的目的。

12、有心“集”的习惯。

学生在学习活动中犯错并不可怕,可怕的是同一问题多次犯错。为避免同一错误经常犯,有责任民的教师在教室里布置了错会诊专栏,有心计的学生建立错误的知识档案,将平时练习或考试中出现的错题收集在一起,反复警示自己,值得提倡。

13、灵活“用”的习惯。

学习的目的在于应用,要求学生在课堂上学到的知识加以灵活运用,既能起到巩固和消化知识的作用,又有利于将知识转化成能力,还能达到培养学生学习数学的兴趣的目的。

221381
领取福利

微信扫码领取福利

九年级下册数学期末试卷附答案

微信扫码分享