欢迎您访问教学资源网(www.jxzy.wang)
首页 > 考试试卷  > 数学试卷 > 2021-2022学年北京市平谷区七年级(上)期末数学试卷

2021-2022学年北京市平谷区七年级(上)期末数学试卷

网友 分享 时间: 加入收藏 我要投稿 点赞
试卷题目
1.第24届冬季奥林匹克运动会即2022年北京冬季奥运会计划于2022年2月4日至2022年2月20日召开,届时总建筑面积约为333000平方米的北京冬奥村将迎来北京赛区运动员及随行官员在此居住.将数字333000用科学记数法表示应为(  )
  • A. 0.333×107
  • B. 3.33×105
  • C. 3.33×104
  • D. 33.3×104
2.如图是一个蛋筒冰淇淋,蛋筒部分可以看作是一个圆锥,下面平面展开图能围成一个圆锥的是(  )
  • A.
  • B.
  • C.
  • D.
3.下列计算中,正确是(  )
  • A. a+a=a2
  • B. 5x3-4x2=x
  • C. x2+2x3=3x5
  • D. 3a2b-4ba2=-a2b
4.用代数式表示“a的2倍与b的平方的和”,正确的是(  )
  • A. (2a+b)2
  • B. 2(a+b)2
  • C. 2a+b2
  • D. (a+2b)2
5.下列说法正确的是(  )
  • A. -
    7a2b
    4
    系数是-7,次数是2
  • B. 多项式-4x2+2x-5是二次二项式
  • C. (-3)2和-32的结果互为相反数
  • D. -a是负数
6.下列实数比较大小正确的是(  )
  • A. 1<-4
  • B. -1000>-0.01
  • C.
    2
    3
    3
    4
  • D. -
    22
    7
    <-π
7.根据等式的性质,下列变形正确的是(  )
  • A. 如果ac=bc,那么a=b
  • B. 如果6a=3,那么a=2
  • C. 如果1-2a=3a,那么3a+2a=1
  • D. 如果2a=b,那么a=2b
8.有理数a在数轴上的对应点的位置如图所示,如果有理数b满足b>|a|,那么b的值可以是(  )
  • A. 2
  • B. 1
  • C. -2
  • D. -3
9.请写出一个比-3.1大的负整数是      .(写出一个即可)
10.若x=1是关于x的方程3x+2a=7的解,则a的值为      
11.90°-45°30′=      度.
12.已知|a-3|+(b+4)2=0,则(a+b)2022=      
13.若-3x2yb
7
6
xay3是同类项,则a-b=      
14.如图,线段AB=10,若点C为线段BD中点,线段BC=4.5,则线段AD的长为      
15.《孙子算经》中记载:“今有三人共车,二车空;二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,每3人乘一车,最终剩余2辆空车,若每2人同乘一车,最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x辆车,y个人,根据题意,可列方程组为      
16.定义:对于任意两个有理数a,b,可以组成一个有理数对(a,b),我们规定(a,b)=a+b-1.例如(-2,5)=-2+5-1=2.
根据上述规定解决下列问题:
(1)有理数对(2,-1)=      
(2)当满足等式(-5,3x+2m)=5的x是正整数时,则m的正整数值为      
17.计算:-2-(-1)+(-11)-(+12)
18.计算:12×(-1-2)-(-24+6)÷(+6)
19.计算:(2
1
3
-
7
6
-
7
12
)×(-
6
7
)
20.计算:-24÷(-8)-[(-3)×(-
3
2
)+(-2)3]
21.解方程:4-(y+2)=3(2-y)
22.解方程:
3x-1
2
-1=
x-1
3

23.按要求画图,并回答问题:
如图,平面内有三个点A,B,C.
根据下列语句画图:
①画直线AB;
②射线BC;
③延长线段AC到点D,使得CD=AC;
④通过画图、测量,点B到点D的距离约为      cm(精确到0.1);
⑤通过画图、测量,点D到直线AB的最短距离约为      cm(精确到0.1).

24.先化简,再求值:
已知x2y-x=5,求(4x2y+2x)-3(x2y+x)-2的值.
25.补全解题过程.
如图,点B是线段AC上一点,且AB=6,BC=
1
3
AB,点O是线段AC的中点.求线段OB的长.
解:∵AB=6,BC=
1
3
AB,
∴BC=
1
3
AB=      
∴AC=      
∴AC=8.
∵O是AC的中点,
∴CO=      =      (理由是:      ).
∴OB=CO-BC=2.
26.列方程解应用题:
已知A地与B地相距150千米,小华自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费是驾驶新购买的纯电动车所需电费的4倍,如果每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.
27.已知:∠AOB=α,∠AOC=β(其中α>β,β<90°),OD平分∠BOC.
(1)如图①,若∠α=90°,∠β=30°,补全图形并求∠BOD的度数;
(2)如图②,若∠α=100°,∠β=40°,补全图形并直接写出∠BOD的度数为      
(3)若∠AOB=α,∠AOC=β(其中α>β,β<90°),直接写出∠BOD=      (用含α,β的代数式表示).
28.定义:数轴上有两点A,B,如果存在一点C,使得线段AC的长度是线段BC的长度的2倍,那么称点C为线段AB的“友好点”.
(1)如图①,若数轴上A,B两点所表示的数分别是-2,4,点C为线段AB上一点,且点C为线段AB的“友好点”,则点C表示的数为      
(2)如图②,若数轴上A,B两点所表示的数分别是-4,-1,点C为数轴上一点,若点C为线段AB的“友好点”,则点C表示的数为      
(3)如图③,若数轴上点A表示的数是-1,点C表示的数是2,若点C为线段AB的“友好点”,则点B表示的数为      
(4)如图④,若数轴上点A表示的数是-1,点B表示的数是3,动点P从点A出发以每秒2个单位的速度向右匀速运动,设运动的时间为t秒.当t为何值时,点P是线段AB的“友好点”.

221381
领取福利

微信扫码领取福利

2021-2022学年北京市平谷区七年级(上)期末数学试卷

微信扫码分享