欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教学论文 > 数学教学论文 > 数学建模思微积分数学论文

数学建模思微积分数学论文

网友 分享 时间: 加入收藏 我要投稿 点赞

下面就是小编给大家带来的数学建模思微积分数学论文(共含3篇),希望能帮助到大家!同时,但愿您也能像本文投稿人“momocxpr”一样,积极向本站投稿分享好文章。

数学建模思微积分数学论文

篇1:数学建模思微积分数学论文

数学文化是具有内涵和外延的系统概念,由于数学文化是高职微积分有效教学的重要前提,同时也是促进教师有效教学和学生高效学习的源泉,因此数学文化在理论和教学实践中都是贯穿高职微积分有效教学的必由之路。

数学文化是国内外研究的热点课题,也是目前教育界积极探索实践的问题。它的内涵在于数学作为文化的一种类型,具有普遍性和特殊性,其特殊性也是作为数学所独有的,如数学思想的高度抽象性、数学精神的深度概括性、数学语言的完美简洁性、数学方法的独特灵活性。它的外延在于数学作为文化同时与经济、科技、人文、历史、美学等各个领域紧密联系,而这种联系都促进人类文明的进步与发展。

1 数学文化是贯穿高职微积分有效教学的必由之路

1.1 数学文化是高职微积分有效教学的重要前提

有效教学的理论源于20世纪上半叶西方教学科学化运动。通常有效教学指“教师遵循教学活动的客观规律,以尽可能少的时间、精力和物力投入,取得尽可能多的教学效果,从而实现特定的教学目标,满足社会和个人的教育价值需要。”同时笔者认为所谓有效教学是教师有效的教学与学生高效的学习的完美结合,即教师的“教”与学生的“学”都达到事半功倍的效果。数学文化是微积分进行有效教学的重要前提条件,因为数学文化渗透高职微积分的各个方面。

数学文化贯穿于微积分发展历史中。虽然微积分做为正式学科产生于近代,但是微积分的思想却始于古代。古希腊阿基米德的《圆的测量》与春秋庄子“一尺之捶,日取其半,万世不竭”等都体现了微积分的思想。17世纪伟大科学家牛顿和莱布尼兹创设了微积分的系统理论,并广泛的应用于天文学、物理学等领域,但其中的过程细节存在逻辑矛盾,由此产生了第二次数学危机。19世纪柯西等数学家从理论上解决“无穷小量”问题,从而结束了长达两个世纪的第二次数学危机。目前微积分的应用则更加广泛。

数学文化贯穿于微积分的思想方法中。微积分的学习不仅是知识的学习,也不仅是培养逻辑思维能力、综合计算能力、创新发展能力,更要从思想方法的高度来正确把握微积分,理解微积分思想中蕴涵的辩证法思想、美学思想、科学哲学思想、人类思维发展的艰辛曲折过程。微积分思想的理解不是依靠做题目解答出来的,而是必须依托数学文化的诠释和解读。

1.2 数学文化是促进教师对微积分有效教学的助推剂

数学文化帮助教师更有效的使学生理解微积分。在具体的高职微积分教学实践中,高职学生对极限、微积分的概念和符号(如“lim”、“df(x)”、“∫”)若仅从教科书来解读,往往不理解,甚至死记硬背都记不下。而如果在教学中从数学文化的角度来解读,则可以极大帮助学生理解微积分。如极限可以从微积分发展历史来加以介绍;积分的概念可以适当解读为最早为解决不规则图形的面积(如同学们熟知的圆面积公式来源)进而解决体积、质量等问题;“∫”则是“Sum”首字母的拉长体现了数学符号的简洁概括美。

数学文化帮助教师更有效的组织教学。通过数学文化贯穿高职微积分有效教学中,可以使教师在教学手段、教学形式、教学方法等方面都有新的突破,从而更有效的组织教学。在教学手段方面,可以在传统教学中适当穿插介绍微积分发展史的多媒体资料、通过多媒体动画效果展示极限的“无限接近”过程、适当运用Matlab软件计算微积分等。在教学形式方面,在班级授课的基础上可以围绕极限、微积分在日常生活中的应用进行分组讨论,然后将每组的结果予全班同学分享,从而提高教学的趣味性。在教学方法方面,高职微积分教学如果仅仅使用讲授法教学,其结果必然不佳。由于数学文化的博大精深,更由于数学文化与微积分的紧密联系,数学文化给予高职微积分教学提供了多种教学方法的选择,如讨论法可以应用在求极限的几种方法,探究法可以应用在从数学文化的角度探索出积分的概念。

1.3 数学文化是促进高职学生对微积分高效学习的发动机

数学文化激发学生学习高职微积分的兴趣。学生学习兴趣对于高效学习的实现起着重要的作用。笔者经过调查发现,大部分高职学生并非初始就对微积分缺乏兴趣,而是认为微积分课程缺少生动有趣。数学文化贯穿高职微积分有效教学中可以使原本感觉乏味的课程变得生动有趣,因为学生从微积分中的数学史感受人类发展道路的曲折,学生从微积分中的数学美学会欣赏自然的和谐美,学生从微积分中的数学思想领悟思想方法的重要性,学生从微积分中的人文价值理解学习数学的目标。

数学文化激发学生学习高职微积分的学习动机。学习动机是引起和维持个体的学习行为以满足学习需要的心理倾向。在目前激烈社会竞争情况下,高职学生有着强烈的专业发展动机,渴望升学成为他们最直接的目的。因此,高效学习微积分、高效学好微积分成为大部分高职学生的迫切需要。若仅仅通过题目练习,则往往在一知半解的情况下并不能达到良好的效果。高职微积分中蕴涵的数学文化,它的丰富的内涵和外延往往能够满足学生学好微积分的需要。因为它能够从辩证法的高度揭示微积分概念的本质,它能够从历史美学的方向把握微积分课程的总体脉络,它能够从思想方法的角度启发解决微积分问题的思路。

2 数学文化贯穿高职微积分有效教学的实践策略

2.1 数学史贯穿高职微积分有效教学

数学史是数学理论的建构发展史,同时也是人类理性思维的探索历程史。教师通过数学史的解读可以让学生理解微积分是不断进步的生动有趣的课程。首先,通过数学史创设的情境让学生感受数学的魅力。教师可以介绍微积分概念的起源和发展、数学家的趣闻逸事、古今数学思想方法的比较等。具体如:函数教学时介绍康托、集合论引起的悖论以及第三次数学危机,极限连续教学时介绍柯西、古代极限思想,导数微分教学时介绍符号的演变、第二次数学危机等。其次,数学历史故事、事件、过程培养学生创新意识和探索精神。如可以介绍瑞士数学家欧拉,在其双目完全失明的情况下,他凭借惊人的毅力和记忆对微积分研究达之久,期间还口述了几本书和几百篇论文,使微积分有了里程碑式的发展。

2.2 数学美贯穿高职微积分有效教学

数学美具有美的特性,教师通过数学美的诠释使学生学会感受美、欣赏美。因为数学美更体现在具有简洁、对称、和谐的特性。首先,微积分符号体现数学美的简洁性。微积分符号的简洁性增进思维敏捷度,将相对复杂的含义简单的表示出来,促进微积分的发展。如:函数的导数只需使用f’(x)即可,但若沿用极限来表示,则显得复杂并难以理解。其次,微积分解题应用体现数学美的.对称体性。微积分中数形对称颇为常见,这也常常能给理解记忆和解题带来帮助。如:导数的积的公式(uv)’=u’v+uv’,分部积分公式∫udv = uv-∫vdu可变形为:∫udv +∫vdu=uv+C。再次,微积分公式体现数学美的和谐性。和谐性贯穿于微积分之中。微积分基本定理中微分的局部性质与积分的整体性质是统一的。如:由于微分与积分互为逆运算,从基本导数公式可以直接推出基本积分公式;又如:罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理之间密切联系体现了微分中值定理的统一与和谐。

2.3 联系实际贯穿高职微积分有效教学

微积分是高等数学的基础,同时也是解决其他自然科学的基础。教师通过将联系实际贯穿微积分使学生充分认识到其解决实际问题的价值和意义。微积分联系实际的应用,可以通过对物理(特别是运动与力学)、几何、经济、生物中数量变化关系的分析,建立简单的数学模型并通过微积分计算加以解决,从而丰富教学内容、调动学生积极性、拓宽学生思路,逐步将学生引导到微积分的学习中来。

2.4 强调过程贯穿高职微积分有效教学

笔者认为高职微积分有效教学必须强调过程教学,必须强调微积分知识发生、发展的过程。教师通过强调过程贯穿高职微积分,从而促使学生充分理解微积分的概念。如:导数教学中,若教师使用常规讲授法,即先直接讲导数的定义,而后给出基本导数公式,最后通过习题给学生练习巩固。则学生只能是机械的记忆公式然后解题,并未真正理解导数。因此,强调过程的有效教学应该是先例举如自由落体瞬时速度问题,让学生带着这个问题去主动探寻答案,而后通过极限计算简单函数的导数,再给出导数的定义,教师例举较复杂函数的导数计算,再给出基本导数公式,最后进行巩固练习。

篇2:数学建模思微积分数学论文

如今,数学建模的思想成为了很多人学习微积分时首先想到的办法。数学建模是一种革命性思维工具,虽然困难却极其有效。以数学建模的思想融入到大学生学习微积分过程中进行了讨论与研究,从而更好地理解数学建模的思想和更好地学习微积分。

一、前言

(一)研究背景

在这个越来越重视知识经济,学习微积分能力凸显的越来越重要的时代,如何有效学习微积分,轻松学习微积分,成为了大多人一直经久不息研究的话题。数学建模的思想最近就莫名其妙的火了起来,很多成人都在参加数学建模的思想的培训。也有很多作为家长的成人,去参加培训也就只是为了帮助孩子学习微积分。数学建模的思想越来越火爆,老师、学生和家长又该如何从中得到学习微积分的办法呢?

(二)研究意义与目的

在数学建模的思想越来越流行与火爆的情况下,很多大学的老师、大学生都开始试着去将数学建模的思想融入到微积分的学习当中,去提高微积分的学习效率。本文就以研究数学建模的思想在大学生学习微积分中的应用与影响,来对数学建模的思想与微积分进行讨论。

二、数学建模的思想含义与作用

数学建模的思想作为一种革命性的思维工具,不仅简单也很有效。数学建模的思想法也称为心智图法,是植基于认知心理学、语意学、组织结构、色彩学、图像学及脑神经微积分等相关理论,所发展出能够有效提升思考力与学习微积分的方法。简单地来说,数学建模的思想就是一份份帮助我们了解并掌握大脑工作原理的使用说明书。使用数学建模的思想,可以增强使用者的记忆力和理解力,通过一张张自我构建的模式图表能让使用者增强立体思维能力;可以把一长串枯燥、冗长的复杂信息变成彩色的、丰富的、容易记忆和理解的。总而言之,数学建模思想对于使用者都是一个能够帮助其有效学习微积分,有效规划的很好的方法。

三、数学建模思想在大学生学习微积分过程中的应用与影响

(一)数学建模的思想在学习微积分上的应用

对于很多大学生,特别是女学生,学习微积分是比较困难的。因为数学上有很多零散的知识点,而每个专题的知识点都是独立和系统的,需要运用理性的思维,也需要良好的逻辑能力。数学本身就是一种符号,一种特殊的数学符号。有些数学数量关系,借助于数学建模的思想,可以使抽象的数学图表,数学公式变得立体直观,更加有利于学生记忆和理解。将各个专题的知识点、数学公式系统地结合起来,由一个中心点展开,找到各个专题中的有联系的地方,或者在一个专题中,由一个知识点联系到另一个知识点,慢慢地拓展开来。比如,了解到三角形的面积体积算法后,能够听过专题知识点之间的联系,联想到正方形,长方形等面积体积的算法,然后可以利用这些零散的数学知识点去解决一些实际应用题。通过数学建模的思想,可以用生活中的实际问题、情景去研究、分析题意,让复杂抽象的数量关系清晰明朗地呈现在直观的模型上,同时做到举一反三,运用建立的模型知识去解决问题。那又该如何带领学生应用数学建模的思想法来解决数学问题呢?首先,老师应该帮助学生理解数学建模的方法,引导学生认识、了解数学建模的方法和作用。其次,在黑板上做出板书示范,如对于多边形的面积体积计算这一个专题。让学生对如何制作数学建模有了更清晰的认识。再次,鼓励学生自己动手制作模型。最后,对模型进行评价,探讨它的可行性。

学习微积分,需要日常的积累。相对于微积分的直观,似乎有些讲不清道不明。对于大学生来说,数学上的问题很多可以套用公式来解决,它的答案是唯一的。所以,很多学生都会觉得微积分很难,分数提高不上去,找不到学习微积分的技巧。但是,通过运用数学建模的方法,学习微积分也有了一定的捷径和技巧。比如,在复习的时候,老师首先可以做个示范。运用数学建模的基础方法,把以前学过的微积分利用建模的方法在进行题解,然后,指导学生自己去寻找归纳方法,对所学过的微积分等进行分类。这样学生在复习时可以通过这个模型方法,系统的、带着联系的观念去记忆。

(二)数学建模思想融入到微积分教学中的影响

虽然从大一开始就会相对地接触微积分,但是很多大学生至今还是没有能够摸清学习微积分的本质套路。因为微积分不像是高数,单独的高数将概念与应用进行了混合,而微积分并没有。对于大学生来说,在学习微积分的过程中,微积分中的积分起到了举足轻重的作用。老师可以在授课时,把积分要素根据主题思想,进行板块记忆,这样学生就可以更好地理解。学生曾经对于积分要素一贯的做法就是拿着微积分做过的题目对他们的过程进行死记硬背,或者机械抄写截图步骤,别说几十遍,或许连百遍都没太大作用。运用数学建模的思想,将整个微积分系统整理,还能帮助学生记住重点,连锁记忆。还有很多学生对微积分的理解十分具有抵触心理。因为微积分步骤繁琐比较长,积分次数又多,很多学生都表示看不懂,看不下去。这时,老师可以运用数学建模思想,对整个微积分进行一个大致的介绍,学生在对微积分题目进行阅读,感知数学建模思想呈现出的内容。老师再根据微积分的主要积分内容和主干思想进行提问,学生带着老师给出的问题,有目的性地去看微积分,既可以突出重点还能注意细节。

近年来,各国对学生微积分课程越来越重视,也都加大了对微积分课程课改的力度,注重培养大学生对微积分的兴趣,体验微积分过程,发展微积分精神。因为微积分这门课程涉及的内容比较广泛,要学的东西也有很多。而在微积分的教学时,方法尤为重要。应用数学建模思想方法,将各部分内容进行系统学习,为以后学习微积分化学、物理等打下坚实的基础,在脑海中留下一定的体系,建立一些可靠有用的模型。

在大学的学习微积分中,虽然分数很重要,但是树立一个健康正确的三观和拥有一个良好的思想,比成绩更加重要和必要,所以数学建模的思想在大学学习微积分中产生了影响。因为大学生刚刚接触微积分,所以思想方法是非常重要的。老师要应用好数学建模的思想法,帮助学生树立好正确地解决微积分的思想观念,必要时要让学生进行数学建模思想的课程培训,可以很好地让学生理解数学建模,促进他们把数学建模的思想当作首要解决微积分的方法,也可以很大程度上帮助到学生学习微积分。

四、总结

在数学建模的思维能力凸显的年代,能够找到适合自己,能够提高成绩和效率的办法实在是非常不容易。数学建模的思想法虽然是一个很有效且非常困难的办法,但是知道是一回事,做到又是另一回事了。数学建模在现代的数学学习中占据着很大的比例,建模的思想可以帮助学生主动建立一个案例模型,然后解决微积分。但是,平时靠着普通的方法解决微积分,低下的效率而以失败告终。有多少人想一探模型魅力而半途折返?很多人,败在了第一步;亦有很多人,败在了不坚持。实践是第一步,坚持则是最重要的一步。数学建模的思想如果能被很好地应用,那么它能帮助使用者更好地学习微积分,如果只是三分钟热度,那么再好的方法也提高不了成绩,提高不了效率。

篇3:数学建模思想下高等数学论文

关于数学建模思想下高等数学论文

1、高等数学教学中数学建模思想应用的优势

1.1有助于调动学生学习的兴趣

在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。

1.2有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。

1.3有助于培养学生的创新能力

和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的.自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。

2、高等数学教学中数学建模思想应用的原则

在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与手段。在实际教学中,不要强求统一,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。

3高等数学教学中融入数学建模思想的有效方法

3.1转变教学观念

在高等数学教学中应用数学建模思想,需要重视教学观念的转变,向学生传授数学模型思想,提高学生数学建模的意识。在有关概念、公式等理论教学中,教师不仅要对知识的来龙去脉进行讲解,还要让学生进行亲身体会,进而在体会中不断提高学习成绩。比如,37支球队进行淘汰赛,每轮比赛出场2支球队,胜利的一方进入下一轮,直到比赛结束。请问:在这一过程中,一共需要进行多少场比赛?一般的解题方法就是预留1支球队,其它球队进行淘汰赛,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在实际教学中,教师可以转变一下教学思路,通过逆向思维的形式解答,即,每场比赛淘汰1支球队,那么就需要淘汰36支球队,进而比赛场次为36。通过这样的方式,让学生在练习过程中,加深对数学建模思想的认识,提高高等数学教学的有效性。

3.2高等数学概念教学中的应用

在高等数学概念教学中,相较于初高中数学概念,更加抽象,如导数、定积分等。在对这些概念展开学习的时候,学生一般都比较重视这些概念的来源与应用,希望可以在实际问题中找出这些概念的原型。实际上,在高等数学微积分概念中,其形成本身就具有一定的数学建模思想。为此,在导入数学概念的时候,借助数学建模思想,完成教学内容是非常可行的。每引出—个新概念,都应有—个刺激学生学习欲的实例,说明该内容的应用性。在高等数学概念教学中,通过实际问题情境的创设与导入,可以让学生了解概念形成的过程,进而运用抽象知识解决概念形成过程,引出数学概念,构建数学模型,加强对实际问题的解决。比如,在学习定积分概念的时候,可以设计以下教学过程:首先,提出问题。怎样求匀变速直线运动路程?怎样计算不规则图形的面积?等等。其次,分析问题。如果速度是不变的,那么路程=速度×时间。问题是这里的速度不是一个常数,为此,上述公式不能用。最后,解决问题。将时间段分成很多的小区间,在时间段分割足够小的情况下,因为速度变化为连续的,可以将各小区间的速度看成是匀速的,也就是说,将小区间内速度当成是常数,用这一小区间的时间乘以速度,就可以计算器路程,将所有小区间的路程加在一起,就是总路程,要想得到精确值,就要将时间段进行无限的细化。使每个小区间都趋于零,这样所有小区间路程之和就是所求路程。针对问题二而言,也可以将其转变成一个和式的极限。这两个问题都可以转变成和式极限,抛开实际问题,可以将和式极限值称之为函数在区间上的定积分,进而得出定积分的概念。解决问题的过程就是构建数学模型的过程,通过教学活动,将数学知识和实际问题进行联系,提高学生学习的兴趣与积极性,实现预期的教学效果。

3.3高等数学应用问题教学中的应用

对于教材中实际应用问题比较少的情况而言,可以在实际教学中挑选一些实际应用案例,构建数学模型予以示范。在应用问题教学中应用数学建模思想,可以将数学知识与实际问题进行结合,这样不仅可以提高数学知识的应用性,还可以提高学生的应用意识,并且在填补数学理论和应用的方面发挥了重要作用。对实际问题予以建模,可以从应用角度分析数学问题,强化数学知识的运用。比如,微元法作为高等数学中最为重要、最为基础的思想与方法,是高等数学普遍应用的重要手段,也是利用微积分解决实际问题,构建数学模型的重要保障。为此,在高等数学教学中,一定要将其贯穿教学活动的始终。在实际教学中,教师可以根据生命科学、经济学、物理学等实际案例,加深学生对有关知识历史的了解,提高学生对有关知识的理解,培养学生的数学建模意识。又比如,在讲解导数应用知识的时候,教师可以适当引入切线斜率、瞬时速度、边际成本等案例;在讲解极值问题的时候,可以适当引入征税、造价最低等案例。这样不仅可以激发学生学习的兴趣与积极性,还可以创设良好的教学氛围,对提高课堂教学效果有着十分重要的意义。

4、高等数学教学中应用数学建模思想的注意事项

4.1避免“题海战术”

数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。

4.2强调学生的独立思考

在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生独立思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。

4.3注意恐惧心理的消除

在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的监督作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。

5、结语

总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水平。

221381
领取福利

微信扫码领取福利

数学建模思微积分数学论文

微信扫码分享