下面小编给大家整理的圆的数学小论文(共含11篇),希望大家喜欢!同时,但愿您也能像本文投稿人“迈威摄影”一样,积极向本站投稿分享好文章。
篇1:圆的数学小论文
“叮铃铃!”“叮铃铃!”随着两声下课铃,放学的时间终于到了,我小跑回家,看到妈妈已经做好了热腾腾的饭菜,与以往不同的是,今天是用饭方形的盘子装菜的。
我开始夹菜,奇怪的是,今天的菜几筷子就夹完了,而平时用圆盘子装菜时经常一顿都吃不完的呀?莫非方形盘子和圆形盘子能装的菜的数量不同吗?我决定通过实验来找到答案。
我找到了两根同样长铁丝,分别围成了一个圆形和长方形,在里面都铺满了米粒,然后又用一个小型秤称了称放在圆形里的米粒和方形里的米粒的重量。终于,真相出现了:圆形里的米粒要比方形里的重很多。米粒重一点就代表米粒多一些,可圆形里面的米粒为什么会多一些呢?肯定是因为圆形的面积大,能装下的米粒也就肯定多,于是,我得出结论:在同等周长的情况下,圆形的面积是最大的。
按照这样的说法来说,把房子盖成圆形一定是最省材料的,可现在大街上形形色色的房子,几乎都是有一个个棱角的,这是为什么呢?我又想起刚才实验时用铁丝摆圆形的时候,费了九牛二虎之力,才摆出一个歪歪扭扭的圆。我的恍然大悟:圆形一定是非常难造的,几乎谁也造不出一个完美的圆。再说了,如果房子是圆形的,那房子里面的各种东西都是方方正正的`,摆放上去会浪费许多空间,还不如方形呢!
通过今天的实验我懂得了:在摆放一些较小的东西,如饭菜,大米等的时候可以用圆形的东西来装,而在建造房子的时候却最好不要这样,否则会产生许多的麻烦。没想到,这样一个小小的圆都有这么大的奥秘,只要我们在生活中多多观察,多多思考,便一定能发现更多有趣的奥秘。
篇2:圆的数学小论文
在我们的日常生活中,圆无处不在,但是,关于圆的知识你们有知道多少呢?如果不知道的话,就跟随着我的脚步,到圆的王国一起去看一看,瞧一瞧吧!
NO.1 关于圆的基本知识
圆是一个由曲线组成的封闭图形。在同一平面内,到定点的距离等于定点长的点的集合叫做圆。而这个定点叫做圆心。而且圆有无数条对称轴哦!圆是不是很神奇呢?
NO.2 关于圆面积的推导及公式
任何平面图形都有一个属于自己的面积公式,当然,圆也不例外。我们知道三角形的面积和平行四边形的面积都是由长方形推导出来的,所以,我们把圆平均分成若干份,并把它拼成一个近似于长方形的图形。当我们拼好之后,我们发现:圆平均分成若干等分,份数越多,就越近似于长方形,而且,我们把原来的圆形与所拼的长方形作比较,圆的面积没变,只是周长和形状变了。还发现长方形的长相当于圆周长的一半,长方形的宽相当于圆的半径。因为圆的周长=πd=2πr,所以圆周长的一半=πr,又因为长方形的面积=长×宽,所以圆的面积=πr×r=πr05。字母表示就是S=πr05。怎么样,圆面积的推导及公式够有趣吧!
NO.3 关于对圆的疑问
学习完圆的知识后,我对圆产生了疑问:为什么车轮是圆的?为什么车轴要装在圆心上?通过查电脑,我终于得到了问题的答案。一、因为圆具有容易滚动的特征,所以车轮采用圆。二、因为圆心到圆上任何一点的距离都相等,使车能保持平衡状态,所以车轴要装在圆心上。
正如古希腊一位数学家说的:“在一切平面图形中,圆是最美的。”没错,圆是美丽的,它因平凡而美丽。它用自己平凡而又美丽的身体给人们的生活带来了无限方便!
篇3:如何写数学小论文
如何写数学小论文
如何写专题论文
一、知识解读
我们所说的专题小论文,实际上是指同学们对在学习、生活或科学文化等领域一些有趣味、有意义的问题进行观察、分析、探讨后写成的成果总结类文章。它的表现形式是多种多样的:可以是对某一事物进行细致观察和深入思考后得出看法;可以是动手实验后分析得出的见解;也可以是对某地进行考查后的总结,还可以靠逻辑推理得出结论……这里“专题”的意思是指一篇文章只就某一现象或问题进行探究,不能一会儿写这个问题,一个儿写那个问题,显得漫无主题。我们所说的“小论文”,不同于专业科研工作者写出的专业性很强的研究论文,它选题较小,内容较浅,因而篇幅也不宜太长。它在格式方面也不作统一要求,只要能把问题说明白即可。
一篇专题小论文的写作,大致分为选择题目、搜集材料、提炼观点、安排结构、起草修改几个步骤。
1、科学选择题目
写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,这就是选题。有人说,选择好题目就等于完成小论文的一半,可见小论文选题的重要性。
选择题目要注意“实用性”、“可行性”、“创造性”和“趣味性”。
“实用性”就是选择的课题要在生产、生活或科学上有一定的实用价值,即研究成果有可能进行移植应用,为人类服务,对人们的生产生活等有一定的实际意义。
“可行性”就是要从实际出发,也就是要根据自己平时对某种问题或现象的观察、研究,选择研究范围和研究深度适合自己水平、条件的题目,是经过努力可以达到的'目标。选题宜“小”,切忌“大”而“全”。避免面面俱到,泛泛而谈,这样有利于深入到问题的实质。
“创造性”就是选择的课题要新颖,有新的设想,主要观点要有自己新的发现、独特的见解。在研究的方法上有所创新,不要简单地重复别人已经做过的实验。这样有利于写出自己的新发现、新认识、新成果。
“趣味性”是指结合自己的特长,选择感兴趣的题目,这样有利于最大限度地发挥主观能动性,干自己想干、愿意干的事,往往会取得事半功倍的效果。
总之,在学习、生活中,要时刻注意观察身边的各种现象,及时发现新的有价值的问题,努力寻求解决问题的方法,进行创造性的思考和研究。选好选准题目,是做好研究和写出高质量小论文的保证。
2、全面搜集材料
搜集材料有多种途径:或到图书馆查阅资料,或搞实地调查、采访,或上网搜寻所需材料。不管采用哪种途径,都要注意材料的准确性。必须核实查阅报刊书籍所得到的资料、例证;核实观察、实验、调查、考查所得到的事实数据;核实网上查询到的各种资料。做到去伪存真,以免材料出现差错而影响论文的科学性。还要注意材料的新鲜性,尽力搜集自己所能发现的同研究题目有关的第一手材料。掌握材料要力求全面,要根据题目所确定的研究对象和范围,搜集尽可能多的材料。保证材料有充足的选择余地,才能写出高水平的论文。
3、准确提炼观点
提炼观点,就是对材料进行分析、比较、概括后提出自己的看法,可以是对观察、实验中新发现、新创造的归纳总结,也可以是对调查、考查中发现的新情况、新问题的分析论述,还可以是在某门学科学习、钻研过程中形成的创造性见解。要对搜集到的材料加以分类比较,仔细筛选,实事求是地进行分析、归纳,研究它们之间的共同点、不同点以及相互联系,找出具有规律性的东西,形成正确的合乎科学性的观点。观点的表述,要准确、清晰、简练,不能含糊费解。
4、合理安排结构
整理了材料,提炼出了观点,下一步就是安排结构,开始撰写论文了。安排结构,应当针对不同类型的专题小论文灵活掌握。写作虽没有固定的格式,但常见的小论文,一般由三部分组成:
(l)开头部分(或称“引言”),提出问题,或紧扣题目对全文内容作一概括介绍。
(2)主体部分,分析问题,说明有关的观察、实验、调查、考查、制作、设想等情况,为归纳科学的结论作准备,这是小论文的核心部分。写作应注意:研究步骤要写得详略得当,实验过程、数据的来历、各种现象都要写清楚,叙述时应有一定的顺序。数据材料要准确,可设计成能说明问题的表格、图解,必要时可附上拍摄的照片、采集的标本等,以增强说服力。
(3)结尾部分(或称“结论”),解决问题,作出结论。获得的结论要有自己独特的见解,文字要简洁生动,层次清晰,条理分明。小论文的结构可以是“总—分—总”的格式,也可先分层论述、说明有关情况,后总结观点的“先分后总”式,还可以先总说观点,后分层论述、说明的“先总后分”式。
结构是为恰当地组织材料、鲜明地提出观点服务的,无论怎样安排,都应当注意条理清楚,观点与材料一致,反映出科学论证的过程,使论文具有说服力。证明观点的材料要具有典型性,也就是选择的材料要能说明问题,不要多,而要精,与论点无关或关系不大的材料要坚决舍弃。为了使结构合理,拟个详细写作提纲是很有必要的。
5、精心起草修改
起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。跟写一般的说明文、议论文相比,专题小论文写作中的表述和修改显得更为重要。因为专题研究活动是十分复杂精细的,反映专题研究的过程和成果不能粗心大意。要认真起草,认真琢磨,反复修改,一丝不苟。看开头是否简明扼要,观点是否正确、可靠;看论据是否典型真实,数据和引文是否准确;看结构是否合理、段落是否衔接自然;看观点和材料是否统一,论证是否符合逻辑;看语言是否准确、通顺、简明、连贯、规范,图、表是否清晰、适用。方方面面都要花力气认真检查,仔细推敲,逐步完善。
二、例文欣赏
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以0.8,也就是35*0.8=28(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*0.8=28(元),40*0.8=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈0.045,32/650≈0。049,0.049>0.045,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。
记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4-X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
篇4:数学小论文
一、在高等数学的教学中融入数学史的必要性
(一)在教学过程中插入数学史教育
在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。著名数学家陈省身说:“了解历史的变化是了解这门科学的一个步骤。将数学发展的历史真实地展现给学生,是数学这一学科应该毫不犹豫地担起的职责。”高职院校高等数学教师提高自身数学素养,将数学史内容融入到高等数学教学教学中,势在必行。高职院校学生相对于本科学生基础弱,底子薄,在高等数学的学习中会遇到许多问题,自然影响学生的学习效果。在课堂教学过程中融入数学史的内容,从数学家们发现、发明解决问题的思路出发,引导学生思考解决问题,可以帮助学生更好地理解高等数学中的公理、公式,解决数学学习中出现的各种困难,树立学习信心,改变高等数学枯燥乏味、一味证明的课堂教学模式。
(二)将数学史蕴涵的思想、方法融入到高等数学教学中
弗赖登塔尔在《作为教学任务的数学》中指出,数学概念、公理及数学语言符号等,包括数学问题解决,不应机械地灌输给学生,或仅是由结果出发,推导出其他数学知识的方式,这种颠倒的教学法掩盖了创造性思维过程,即学生的数学学习不应该重复人类的学习过程,而应该进行“再创造”。数学史烙印着数学家处理数学问题的痕迹,其中蕴藏着数学家处理相关问题的思想和方法,比如归纳推理、概况分析、类比猜想等逻辑思维方法及跳跃性的直觉思维方法,这些恰是数学教学中学生所必须具备的。在高等数学教学中,作为数学教师,数学中的这些思想、方法应该利用数学史选择典型的数学史题材,分析数学家发明、发现过程中的心智活动,透析数学家的脑海里的灵感,以对学生的数学学习起到启迪思维的作用。著名教育家斯金纳(Skinner)说:“如果我们将所学过的东西忘得一干二净,最后剩下的东西就是教育的本质了。”最能传承一门学科本质的就是这门学科的历史,高等数学也不例外。多数高职院校的学生在学习完高等数学课程之后,由于多种原因,除少部分与专业相关的内容外,其余知识都会慢慢淡忘,留在学生大脑中应当是高等数学独有的思维方式,解决问题的方式、方法,这正是高等数学教育的目的和价值所在。数学史在这些方面的推动作用是毋庸置疑的。数学思想的提炼和方法的运用是数学教学的关键,数学思想方法在教学中的重要意义,受到很多数学教育家的重视。高等数学课程内容始终围绕着“基础知识”与“思想方法”两个基点。在教学中,教师必须深挖教材中的思想方法,化“无形”为“有形”。通过数学史的教育,将鲜活的数学思想方法渗透在数学知识的学习过程中。
(三)数学史的融入符号学生的认知发展规律
影响学生学习的心理学因素包括认知因素和非认知因素。直接参与数学学习认知活动的因素称为认知因素,包括原有的数学认知结构、现有的思维发展水平和数学能力等;不直接参与数学学习认知活动的因素称为非认知因素,包括兴趣、动机、情感和意志等。数学史可以帮助学生加深对数学概念、方法和思想的理解,数学史也影响学习中的记忆和迁移。同时,数学史影响学生的认知结构。认知结构是学习者头脑中的数学知识按照自己理解的深度、广度,结合自己的感觉、直觉、记忆、思维、联想等认知特点,组合成一个具有内部规律的整体结构。所以,数学史通过影响学生的认知结构参与学生的数学学习活动。数学教育的目的在于使受教育者获得发展,数学学习的结果不仅是知识的习得,更重要的是思维的发展、形成优良的数学思维品质,数学认知结构的完善,等等。这一过程的完成,就需要抽象的数学思想方法的加入,这些思想方法的习得主要依靠数学史的融入实现。另外,高等数学课程教学中融入数学史教学,也符合维果茨基的“最近发展区”理论,即教师在教学时必须考虑学生的两种发展水平:一种是学生现有的发展水平,另一种是在他人尤其是成人指导下可以达到的较高的发展水平,这两者之间的差距就叫做“最近发展区”。教学要想实现既定目标和效果,必须考虑学生现有的思维发展水平,并要走在学生发展的前面。通过数学史的融入,可以帮助学生在高等数学学习中在教师恰到好处的逐渐引导下学习数学思想方法。在高等数学课堂教学中,遵循学生的心理发展规律,符合学生的认识发展水平,通过相关典型历史材料的引入,引导学生学习高等数学的相关知识及思想方法,促进学生认知水平的再次升华。
二、结语
数学史与高等数学课程的融合是必然的,不同阶段对数学史与数学教育的融合有不同的要求。比如在义务阶段数学教学中,引入数学史,培养学生的数学思想、方法和优良的数学品质。高职院校的高等数学课程教学承载着更多的任务和目标,通过高等数学的学习,要使学生对数学的思想、方法有一定的认识,同时提高学生的思维水平。这些问题的解决都需要在课堂教学中恰当地引入、融合数学史教育。在高等数学教学中融入数学史教育,帮助学生消化理解数学教学内容势在必行。那么,在课堂教学中如何利用数学史呈现课程内容,激发学生的学习兴趣,提高学生的思维水平,是今后的高等数学教学中急需讨论、解决的问题。
篇5:数学小论文
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学。它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。
同其他科学一样,数学有着它的过去、现在和未来。我们认识它的过去,就是为了了解它的现在和未来。近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和。预计未来的数学成就每“翻一番”要不了。所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的。
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程。
例如物理学,人们早就知道它与数学密不可分。在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了。
又如化学,要用数学来定量研究化学反应。把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应。这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学。
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动。这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象。这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学。这使得生物学获得了重大的成就。
谈到人口学,只用加减乘除是不够的。我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的。事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样。这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述。研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等。
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务。这里要用到很高深的数学。
谈到考试,同学们往往认为这是用来检查学生的学习质量的。其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的。现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量。只有质量合格的考试才能有效地检测学生的学习质量。
至于文艺、体育,也无一不用到数学。我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”。然后就剩下的分数计算平均分,作为这位演员的得分。从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉。这一切都包含着数学道理。
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造。”我们在这里所说的,正是第三种发明创造。“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂。”
篇6:数学小论文
1<找千克和克>
国庆假期中, 和妈妈一起去超市购物,准备找找千克和克.走进超市,首先来到了饼干柜旁,这么多琳琅满目的饼干中, 选择了 最喜欢闲趣饼干, 仔细看了看,终于在角落里找到了“净含量100克”,说明这包饼干不含袋子的重量是100克,那要是有10包这样的饼干不就是1千克了.
接着 们又来到买米的地方, 发现一袋米要10千克,如果 们家每天吃2千克的话, 家每个月就要吃60千克,也就是这样的6袋米了.
后来 又看到了16个鸡蛋大约有1千克,一个菠萝大约2千克,一个西瓜大约3千克
今天, 收获真多啊, 感受到了数学中学到的千克和克这个知识,在生活中数学真的很重要.
2.<一个小小的数学误会>
很多人都以为阿拉伯数字是阿拉伯人发明的,可是 一直对他很怀疑,果不出 所料,今天数学课上老师介绍了阿拉伯数字的真正的来历.原来这是一个误会!阿拉伯数字真正的发明者是印度人,因为当时阿拉伯人的航海业很发达 ,他们把数字从印度传到了阿拉伯,欧洲人从他们的书上了解了这种简便的记数方法,就认为是他们发明的,所以称它为阿拉伯数字,后来这个误会又传到了中国.
最后, 很想对印度人说:"谢谢你们给 们人类带来了这么大的方便,就因为这样, 很喜欢数学.不仅数字王国很神奇,而且数学的历史知识更是丰富.
3.<发现>
今天, 在家发现了一个数学问题.
发现一杯可乐800克,一杯绿茶500克,一杯冰红茶不知道多少克,于是 又补充了一个信息-------冰红茶比可乐少200克,要求三杯一共多少克呢?于是, 按照老师教的方法算:800-200=600,再600+500=1100,最后1100+800=1900,所以一共1900克.
认为在日常生活中还有许许多多的数学问题,希望小朋友们能多多观察身边的数学问题.
4.<巧妙的加法和减法>
加法和减法在 们的生活中是缺一不可的.身边有许多事情都要用到加法和减法.比如在学校里,统计分数,统计认数-------生活中,妈妈上街买菜付钱;在家里,计算一个月的开支也要用加减法.这一切的一切都与加减法有关,所以加减法在 们生活中起了十分重要的作用.
加法与减法真奇妙啊!
5.<去天目湖的途中>
现在, 们数学课正在解决两步计算的实际问题.
今天是星期天, 们全家去天目湖玩,在去天目湖的路上, 就想到了这样一个问题.
当公交车靠第一站时, 看见有8个人上了车,而第二站上了3个人,那如果第三站上车的人数是第一站和第二站人数的两倍,那第三站一共上了几个人呢?
小朋友们,你们会解决这个问题吗?用 们学到的知识试一试吧.
6.<24时记时法>
24时记时法真是无所不能,不信就看看下面 是怎样过周末的吧::首先,7:30起床,然后7:45---8:00洗脸,8:00---8:15吃早饭,8:15---9:15做作业,9:15---10:30看电视,10:30---11:00吃中饭,11:00---15:00睡午觉,15:00---16:00玩,16:00---17:30看动画片,17:30---18:00吃晚饭,18:00---20:00看电视,20:00---21:00打电脑,21:00睡觉.24时记时法是不是很伟大呢?如果你也有这样的想法,也一定要写一篇这样的日记哦!
7.积少成多
今天下午, 和妈妈来到超市买东西.
当 们买完所需的东西之后,刚要离开, 看见货架上正好摆着火腿肠,于是 让妈妈买些火腿肠,妈妈同意了.可是刚走几步, 又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包4.30元.到底买一包一包的呢,还是买一根一根的? 犹豫了.突然, 的脑子一转,有了,只要比较一下,哪一种合算就买哪一种.于是 开始算起来:零卖的如果买10根,每根4角,就是40角,等于4元,而整包的要4.30元,多了3毛钱,所以 决定买散装的. 把 计算的过程说给妈妈听,妈妈听了直夸 爱动脑.
8.数学报
今天, 们又发了小学生数学报,这期报纸真的很精彩.
上面讲了怎样让书香伴你左右,茅以升如何苦练记忆力的和阿拉伯数字的由来等数学小常识,翻开一面,有许多数学的小窍门,如:如何找规律,怎样牢记知识,翻开另一面有一些数学小故事,从中 获得了很多课堂上学不到的内容.
所以, 觉得每一次看数学报都能让 掌握到更多的知识, 很喜欢它.
《数学的奥妙》 湖塘桥中心小学 张娜
数学在 们的生活中是无处不在的.比如:在菜市场买菜要付多少元钱?在超市里买东西一共要付多少元?.还有,认识了千克和克,你就可以自己算一算称的东西的价钱了.怎么样,数学是不是很重要?
所以, 要提醒你---一定要学好数学哦!
数学又是很奥妙的,它可以让 们知道一些未知数.所以有的小朋友觉得数学有点难,有时还要请家教.
但是数学也是很灵活的.除了 刚才提到的以外,生活中的数学还有很多种呢!
篇7:数学小论文
[摘要]学生的已有认知结构、学习认知情感和情绪、数学认知材料和问题情景及教师的教学风格和方式等是中学生数学语言能力发展的关键因素。本文从学生、数学材料、教师三个方面对这一问题作了深入的探讨。
[关键词]中学生数学语言能力发展影响因素
学生的数学语言的认知能力是影响其数学学习及其发展的关键因素。所谓的数学语言的认知能力是学生数学学习能力之一,包括对数学知识的阅读、转换、组织、表达、构造与符号操作能力等。因此,对影响中学生认知能力发展的因素的探讨就显得很有意义,笔者试图从学生、数学材料、教师三个方面作些有益的探讨,以期有所收获。
一、学生的原有的认知结构
学生掌握数学语言知识的能力随年龄的增长、智力的发展、数学认知结构的发展而发展。学习者的认知水平和认知结构是学习者进行现实学习的前提。在认知结构的同化发展中,迁移对数学语言的学习影响较大的。
迁移是一种心理现象,是一种学习对另一种学习所产生的影响。学习之间的影响有时是积极的,有时是消极的。凡是一种学习对另一种学习起促进作用的,叫正迁移;凡是一种学习对另一种学习起干扰或抑制作用的,称为负迁移。
二、数学学习材料
数学材料是影响数学语言认知能力发展的重要因素。具体地,可以从数量、变式、典型性、反例四个方面加以阐述。
1.数量。数学学习材料的数量太小,学生对具体材料的感知就会不充分,就难以对具体材料所包含的各种要素进行全面鉴别,对数学语言和知识的掌握所必需的经验也难以建立起来,这样就会由于语言感知、转化不够而对知识的本质特征和非本质特征的比较不充分,最终无法建立理解知识和语言转化所需要的坚实的基础。相反,数量太多一则会数学的非本质可能得到不恰当的强化而掩盖了本质特征,二则会使学生的认知情感受到不利的影响,多既能生巧也更能生厌。
2.变式。变式是通过多种语言的转换而变更对象的非本质属性的表现形式,变更观察事物的角度或方法,以突出对象的本质属性,突出那些隐蔽的本质要素;一旦变更具体对象或变更对象的语言陈述形式,那么与具体对象紧密相连的那些非本质属性就消失了,本质属性就显露出来。数学知识的掌握就是通过变式进行比较而舍弃非本质属性并抽象出本质属性而掌握的。
3.典型性。实践表明,数学知识的本质属性越明显,学习越容易,非本质属性越多、越突出,学习就越困难。因此,在数学教学中,选择具体实例时,为了突出知识的本质属性,减少学习困难,教师可以采用扩大有关特征的办法,通过多种语言形式表征,并对知识的本质可以做适当的归类练习。
4.反例。反例提供了最有利于辨别的信息,使人产生深刻印象,对知识理解的深化有非常重要的作用。反例的适当使用可以使学生对知识和数学语言的理解更加精确,而且还可以排除无关属性的干扰,学生对本质的属性的表述不准确是也是造成错误的一个关键原因。但应该注意的是,反例是在学生对知识的有了一定了解的基础上才能使用的。
三、非智力因素
从数学与教育心理学来看,影响数学语言的认知的非智力因素中主要是情绪和情感。所谓情绪和情感,就是个体受到外部环境的刺激而产生的一种心理状态或心理反应。情绪和情感的产生是以客观事物和对象是否满足个体需要为中介的。通常那些满足个体需要的对象,会引起满意、高兴、喜悦等积极的情绪和情感;反之妨碍需要得到满足的对象,就会引起痛苦、忧愁、厌恶等消极的情绪情感。
学生在数学语言的认知活动中,必然伴随着情感体验,它常使学生依此来调节自己的学习行为。情感体验通常分为两类,一类是积极的情感体验。另一类是消极的情感体验。中学生常常处于这两种体验的交替状态。积极的情感体验能促使主体对原有目标修正,或重新确立新目标,即使遇到思考不清楚的问题时,也能有勇气、有自信心,想方设法克服困难。常常处于消极体验中的学生,则有可能丧失信心,破罐破摔。
学生对数学符号的情感直接影响着数学符号的学习效果。数学家A·巴特斯布说过:“实际上,我们学校的成绩在一个方面常常是消极的,那就是学生们学习后不但对数学符号冷漠,而且感到它们可怕。”这种现象看来是带有一般性的,这种情绪障碍主要来自两个方面:(1)情绪的产生是以客观事物和对象是否满足个体的需要为中介的,数学符号的高度抽象性使部分学生不能立即感到“满足个体的需要”;相反地,往往还会因其抽象、难懂而产生沮丧心情。(2)一些不适当的、夸大了的宣传,歪曲了数学符号的形象,使学生产生一种畏难情绪。数学符号是抽象的,但它充满生机,有其数学思想,不是枯燥的。然而“公众的舆论”有时并不是公正的。有些好心的教师告诫学生说:“数学抽象、枯燥,你们要好好学习,否则将会留级。”这种讲法没有积极作用,只能使学生讨厌数学。
四、教师
教师是教学活动的执行者,是学生学习活动的设计者。在学生的眼中,数学教师是最直观的数学,数学教师是数学的形象代言人。大量的研究表明,一个民主、开朗、风趣幽默、知识渊博的数学教师能够陶冶学生的情操、促进学生的发展、吸引学生对数学的喜爱。教师的教学观、学习观、学术水平是形成教师教学风格和方式的关键因素,它们影响着教师的行为方式。教师的言谈举止特别是语言对于学生有着深刻的影响,教学中如果教师的语言能够像磁铁一样吸引学生,则将产生良好的教学效果。
数学是一门严谨的学科。为此,数学教师在教学活动中要关注自己的教学语言,要注意以下几点:(1)数学教学语言要有科学性和准确性,不能出现知识性错误;(2)数学教学语言要具有规范性和逻辑性,符合语言的约定俗成或明文规定的标准,合乎形式逻辑和辩证逻辑;(3)数学教学语言要具有形象性和生动性,尽量用学生熟悉的形象、生动、有趣的语言,通俗易懂的比喻来表达,使数学内容变得生动形象、清楚明白;(4)数学教学语言要具有启发性,通过语言来启发学生思考问题,用鲜明生动的语言变学生被动接受为主动获取,使学生既学到了知识,又掌握了方法;(5)数学教学语言要具有简洁性,教学用语应简洁、明快,符合青少年学生的特点,要加强对数学语言的提炼,并充分利用数学术语、符号和式子来表达有关内容。
五、结论
由以上的讨论,我们可以得出以下结论:教学只有立足于学生的已有认知结构,选取合适的数学认知材料和问题情景,调整学生的学习认知情感和情绪,有效的迁移才能发生,学生的数学语言认知能力才能得到正常的发展。
参考文献:
[1]钱珮玲,邵光华编著.数学思想方法与中学数学[M].北京:北京师范大学出版社,.
[2]曹才翰,章建跃著.数学教育心理学[M].北京:北京师范大学出版社,1999.
[3]刘云章著.数学符号学概论[M].安徽:安徽教育出版社,1993.
[4][美]T·丹齐克著.数,科学的语言[M].北京:商务印书馆,1985.
[5]李士锜.PME:数学教育心理学[M].上海:华东师范大学出版社,20xx.
篇8:数学小论文
我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。
今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。……
从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。
做了这道题,我知道做数奥不能求快,要求懂它的方法。
来源:m.187110.html分享本站内容m.0s.Net.cn,请保留文章来源信息和原文链接!
篇9:数学小论文
今天,爸爸要我做奥数书上的还原问题。
一开始我还以为很难做呢,毕竟我很少做还原问题。第一题:一个水桶里面装有水,连桶共重五千克,把水加到原来的四倍,连桶共重11千克。桶里原来有多少水?桶有多重?我稍微想了一下就得出了答案:11-5=6千克,6/(4-1)=2千克,5-3=3千克。桶重三千克,水有两千克。原来还原问题那么简单,我不禁暗暗自喜。
第二题:某车间分成甲、乙两个组,因生产需要,把甲组工人的一半调到乙组去。后来改变工作程序,又把乙组的25人调到了甲组,这时甲组有45人,乙组有22人。甲乙两组原来各有多少人?我绞尽脑汁也想不出,只好找爸爸帮忙,爸爸让我使用倒推法。我一用倒推 知道了答案:现在甲有45人,因为乙组把25人调到了甲组,所以甲要减去25人:45-25=20;乙也要加上25人:22+25=47。第一次时,甲把一半的人调到了乙组,所以甲要乘上2:20*2=40;乙则减25:47-20=27。用了倒推,我其他的还原问题的都会了。
会了倒推,我以后做题都要轻松多了。
篇10:数学小论文
巧换矿泉水
在日常生活中,做每件事情都离不开数学,可见数学与我们的关系多么亲切呀。
比如说,超市里卖的水果、蔬菜,商城里卖的衣服、鞋子和家具,稿件上来字数等等,都要用到数学。生活中还有很多很多有趣的数学,等我们去发现、去探索。
暑假里我跟爸爸、妈妈和姐姐去表哥家玩,路上口渴了,爸爸只好到附近杂货店买矿泉水喝。杂货店有规定:3个矿泉水瓶可以换一瓶水,一瓶矿泉水1元。
爸爸拿了十瓶矿泉水,我非常口渴,一会儿两瓶矿泉水就已经喝完了。还没等我回过神来,已经有好几个空瓶子了。爸爸轻轻的问我:“我们用十元钱能换多少瓶矿泉水呢?”我想了想: 是冰水喝完了9个空瓶子换了3矿泉水……还剩下两个空瓶子。我高兴地对爸爸说:“爸爸,我算出来了是14瓶矿泉水,还余下两个空瓶子。”爸爸笑了,说:“你再想一想!”我若有所思:“我们可以向杂货店老板借一瓶水喝完之后再加上我们这两个空瓶子又可以换一瓶水,总共15瓶水。”
再生活着处处都有数学知识,等我们去发现。
篇11:数学小论文
数学是我很喜欢的学科,总是感叹于数字的奇妙,今天就来和大家说一说数字的奇妙之处。
回数是指从左向右或从右向左读都是一样的数,如101,949。任意取一个不少于两位的数,把这个数倒过来,将这两个数相加,重复这个过程就一定能得到一个回复,这便是著名的“回数猜想”。为什么叫“猜想”,而不叫“定理”,还是因为196这个数,计算机进行了几十万步还是没有得到回数。大家无法得知它能否得到回数,或许它就是“回数猜想”的反证。
数的陷阱―6174,它有什么特别之处呢?是这样的,任意取一个四位数,以0开头也算,但不能完全一样。把写出的个各位数按从大到小顺序和从小到大顺序重新排列,得出最大数和最小数,两者相减得到另一个四位数,重复这个过程若干次,最多7次,就能得出6174。用617子本身来试:7641―1467=6174,仅用一步便掉入陷阱,所有四位数都会调入6174这个陷阱。
想一个三位数,将它写两遍,变成六位数,比如673,变成673673,将这个六位数除以7,除以11,最后除以13,会得到原来的三位数,将7×11×13=1001,也就是说一个三位数乘1001,得这个三位数的双写。
看了以上三个数字的妙处,你理解数字的奥妙了吗?我会继续学习数学,探索数学之美。