下面是小编为大家带来的数学毕业论文报告(共含12篇),希望大家能够喜欢!同时,但愿您也能像本文投稿人“windows”一样,积极向本站投稿分享好文章。
篇1:数学毕业论文报告
设计计划学是一门新兴的综合性边缘学科,它研究的是如何保证设计的优良度和高效性,以及如何指导设计的展开。在设计需要科学计划这一概念已成为现代设计界共识的情况下,我国业界内部对设计计划学的认识与研究,还没有跟上设计发展需要的步伐。针对我国设计教育现状,本书将就该学科的教学方面,提出一套科学的行之有效的设计计划方法。以期为设计类学生深入理解设计,更好地掌握设计的方法提供必要的指导。
选题依据
计划在今天已逐渐成为一门显学,大至国家事务,小至个人日常生活,社会各个领域都离不开计划,各类大大小小的成功项目,很大程度上都自觉或不自觉地导入,实施了相应的计划活动。计划学的兴起是知识经济时代资源整合化的大势所趋。而反映到艺术设计学的领域,我们可以发现,计划同样有极大的发展空间:如何设计,如何保证优良的设计,这都需要科学的调查研究,需要精准的分析定位,需要详实的设计依据,需要合理的组织安排,这些与我们通常理解的形式,风格的赋予层面的设计相异而相成的工作,就是设计计划的内容。而如何正确进行设计计划,存在着一个方法论的问题。在学科间的交叉融合成为当前学术主流的大环境下,设计计划应该可以打通各设计专业间的藩篱,为取得成功的设计提供行之有效的方法上的支持数学毕业论文开题报告(3篇)数学毕业论文开题报告(3篇)。
在设计先进国家,对设计计划方面已有一定程度的研究。尤其在设计方法研究方面,已取得比较成熟的结果,出现了一些有效的方法,如技术预测法,科学类比法,系统分析设计法,创造性设计法,逻辑设计法,信号分析法,相似设计法,模拟设计法,有限元法,优化设计法,可靠性设计法,动态分析设计法,模糊设计法等。这些方法侧重于不同的`专业设计方向,而设计计划面临不同设计专业,更需要的是一种整合的灵活的解决问题的计划方法。这就需要我们针对计划自身的学科特点,从现有的成型的方法群中进行提炼,总结出一套适应现在情况的设计计划方法来。
创新性及难度
本文致力于从简明实效的角度,为设计计划人员提供易于操控,而且便于和各个专业设计师进行沟通、交流的方法。要求该方法不仅对专业设计团队的计划环节有用,对个体设计人员的的设计工作也应具有指导作用。这就需要针对我国设计现状,从国内外各学科领域名目众多的相关方法中进行精心挑选,合理安排,科学综合的处理,创造出一套高效的计划方法来。虽然国外的相关成果业已成熟,但如何在众多不同侧重角度的方法中总结出理想的计划方法,需要我们对所有已知方法深入地认识和理解,同时明了我们设计各专业的工作规律,以期做到跨专业的有效性。
篇2:数学毕业论文报告
课题名称:
钢筋混凝土多层、多跨框架软件开发
项目研究背景:
所要编写的结构程序是混凝土的框架结构的设计,建筑指各种房屋及其附属的构筑物。建筑结构是在建筑中,由若干构件,即组成结构的单元如梁、板、柱等,连接而构成的能承受作用(或称荷载)的平面或空间体系。
编写算例使用建设部最新出台的《混凝土结构设计规范》GB50010-,该规范与原混凝土结构设计规范GBJ10-89相比,新增内容约占15%,有重大修订的内容约占35%,保持和基本保持原规范内容的部分约占50%,规范全面总结了原规范发布实施以来的实践经验,借鉴了国外先进标准技术。
项目研究意义:
建筑中,结构是为建筑物提供安全可靠、经久耐用、节能节材、满足建筑功能的一个重要组成部分,它与建筑材料、制品、施工的工业化水平密切相关,对发展新技术
篇3:数学毕业论文报告
新材料,提高机械化、自动化水平有着重要的促进作用。
由于结构计算牵扯的数学公式较多,并且所涉及的规范和标准很零碎。并且计算量非常之大,近年来,随着经济进一步发展,城市人口集中、用地紧张以及商业竞争的激烈化,更加剧了房屋设计的复杂性,许多多高层建筑不断的被建造。这些建筑无论从时间上还是从劳动量上,都客观的需要计算机程序的辅助设计。这样,结构软件开发就显得尤为重要。
篇4:数学毕业论文开题报告
一、选题背景
随着社会的发展,人们深刻地认识到,想要一个国家向前不断的迈进,其源源不竭的动力就来源于一种精神,即创新精神。新一轮有关基础教育的课程改革中,我们国家教育部出台了有关以全面推进素质教育为目的的深化教育改革的文件,其明确地提出了要符合当今时代的发展要求,注重对学生个性的发展,以培养学生的创新性精神和实践性能力作为其重点内容。经过十年的实践,对课程的改革取得了明显的效果,并且为了贯彻落实《国家中长期教育改革和发展规划纲要(20xx-20xx 年)》,适应新时期全面实施素质教育的要求,我们国家教育部专家对义务教育阶段各个学科的课程标准进行了修订和完善,新增了创新意识作为关键词,将创新意识的培养作为了现代化教育的基本任务。而研究性学习是我国基础教育课程的重大突破,是当前教育改革的重点和热点内容,也是当今国际上比较普遍认同和实施的一种新的学习方式,对于调动学生的积极主动性、培养学生的创新性精神和实践性能力,开发学生的内在潜力,具有重要的价值意义。
国外对研究性学习的研究可追溯到苏格拉底,他将教师比喻为“知识的产婆”,并在教育方面做出的重大贡献是提出了要注重启发学生学习与思考的方法。从 18 世纪起,研究性学习就得到人们的广泛认识。18 世纪末到 19 世纪,法国启蒙学者卢梭提出了要遵循着人类的天性发展。继卢梭之后,著名的教育家裴斯泰洛齐提出了“教育心理化”,他倡导在活动过程当中,要对儿童内在的能力得以培养和发展的同时,还要注重儿童的心理发展特点以及儿童之间的个别差异性;他们的思想都为今天的研究性学习奠定了一定的思想基础。在 20 世纪左右,美国的杜威、克伯屈等人在这方面同样进行了研究,影响最大的是美国著名哲学家、教育家杜威,他主张“从做中学”,认为学生仅仅通过教师讲解或者看书所获取的知识都是虚无飘渺的,只有通过“活动”获取的知识才是实实在在的知识、才能真正的促进学生的身心以及未来发展。在 20 世纪中期,布鲁纳提出了认知发现学习理论。他认为学生非被动的接受知识,而应该主动的去探究知识;施瓦布也提出了“探索研究性学习”,他倡导通过探索研究来进行对所学知识的掌握,从而使得学生探索研究的能力得以发展。
二、研究目的和意义
21 世纪初,新一轮的基础教育课程改革由教育部正式的开启了,将“研究性学习”融入高中必修课之中,以此,作为我国高中课程改革的一项重大举措。从此之后,“研究性学习”成为我国基础教育变革当中一门独树一帜的课程,它掀开了基础性教育的新一页,无可置疑,它已成为我国当前课程变革中最吸引眼球的一项举措。在高中数学的学习过程中安排了研究性学习课程,不但对于学校构建符合素质教育思想和迫切需要的新型人才培养模式是一种突破性的改革,而且还可以丰富教学模式,从而使得教师和学生在知识、技能、实践等方面更上一层楼。具体来讲:
第一,有作用于课程的变革。革新到目前为止,研究性学习已经不言而喻地成为了我国基础教育课程变革的突出点。作为一门基础学科的数学,它是中小学革新的龙头,所以开展数学研究性学习对于课程的变革具有重大的意义与价值。
第二,有作用于教师教学方式的变革。教育文件提出了要注重对教师由强硬灌输到鼓励、引导等教学方式进行转变。
第三,有作用于学生学习方式的革新。教育出台了有关在课堂中,针对学生死记硬背进行变革的文件,具体内容为不仅要倡导学生自己积极参与、还要培育学生获取未知知识的能力、分析和解决问题的能力,收集和处理信息的能力以及与人沟通交流的能力等。因此,怎样让学生从被动的学习方式变更为积极主动探索的学习方式,成为教育一线工作者乃至科学家们进行研究性学习研究的重要原因。
三、本文研究涉及的主要理论
数学研究性学习是指学生在数学教师或者相关学科教师的指引下,从各类学科以及实践活动中选取并设定为研究性学习的课题,运用类似于数学学科的科学研究方法去积极主动的获取数学知识、并应用数学知识来解决相关问题,使得学生对数学知识把握的同时,体验、了解、学会和应用数学学科所蕴含的研究方法,以及对学生科学精神的培养以及科研能力发展的一种学习方式。在数学研究性学习的实施过程当中,学生不仅明确地了解了活动的程序,还深深地体会到数学这门学科所带给人们的奇妙之处,更加关键的是改变了学生学习的传统思维模式,培育了学生独立自主的学习能力、勇于探索的科学精神以及相互协作的团队意识。其活动过程的实施,对于传统的教师模式也提出了一定的挑战,具体来讲,就是教师主要起着指路人的作用,对学生活动过程中的具体表现给予适时的正确评判,督促学生有效的完成各个阶段的活动任务,从而使学生的主动性得以充分调动。
四、本文研究的主要内容
由于没有研究性学习的具体教材做支撑,那么,对于一线教师而言,确定研究性学习内容是十分困难的事情,但是我们知道类比方法可以引出很多的内容,从中可以启发我们通过研究性学习相关理论的学习,运用类比的方法,从如下两个不同层次进行研究性学习的实践探索,分别为从三角形到四面体已知类比开展的研究性学习活动作为层次一;从三角形角平分线和旁切圆半径的不等式分别类比到四面体以获得四面体中新成果为目的所开展的研究性学习活动作为层次二。并且层次一从活动的组织与安排、资源的收集、分析与利用以及三角形与四面体已知形式与证法的类比情况等方面都为层次二做了一定的铺垫,而层次二也是对层次一的升华。具体针对层次一开展研究性学习实践探索的研究思路,简要地做如下介绍:
第一,让学生从已学过到的有关三角形与四面体的已知知识中选定研究课题;
第二,通过指导教师提供有关研究性学习活动方案的一般步骤作为参考,引导学生完成该课题活动方案的设定;
第三,在本层次中,由于学生可以通过收集、分析信息,采用小组合作的学习方式完成该课题的研究,因此具体活动实施根据每组情况在课后完成;
第四,每个小组选取代表针对于小组成员的参与程度、取得的主要成果、得到的新猜想、没有解决的问题等进行相关汇报;最后,针对每组出现的问题,进行组间与师生间的相互交流,从而完善课题以及深化课题。针对层次二的第一个课题开展研究性学习实践探索的研究思路,简要地做如下介绍:
第一,由指导教师提供给学生有关三角形内角平分线的两个不等式,通过文献的检索与查新,确定到目前为止其对应在四面体中仍没有被研究,从而将其确定为所研究课题的背景;
第二,根据课题背景,帮助学生选定研究课题为三角形角平分线的两个不等式到四面体二面角平分面不等式的推广;
第三,通过师生间的共同分析,从而确定活动的目标与重难点;
第四,将对课题内容感兴趣以及数学成绩优异的学生组成活动兴趣小组来开展研究性学习;
第五,收集、学习、研讨三角形中不等式的主要 5 种证法,深刻的领会其证明思路、相关内容与研究方法;第六,广泛收集并学习四面体中有关的理论知识,为接下来开展研究工作做好充分的准备;第七,利用类比猜想出四面体中相应不等式的形式;第八,通过指导教师的引导,并利用类比尝试给出四面体中相应不等式的证明过程。层次二的第二个课题所开展的研究性学习实践探索与本层次第一个课题相类似,所以由学生尝试着独立地去完成,指导教师进行适当的指导。
篇5:数学毕业论文开题报告
一、选题的依据、意义及相关研究概括:数学不等式的研究首先从欧洲国家兴起, 自从著名数学家 G. H. Hardy,J. E. Littlewood和G. Plya的著作 Inequalities由Cambridge University Press于1934年出版以来, 数学不等式理论及其应用的研究正式粉墨登场, 成为一门新兴的数学学科, 从此不等式不再是一些零星散乱的、孤立的公式综合, 它已发展成为一套系统的科学理论。
不等式是数学分析中在进行计算和证明时经常用到的且非常重要的工具,同时也是数学分析中主要研究的问题之一,可以说不等式的研究对数学分析发展起着巨大推动作用。在本论文中首先介绍了不等式的研究背景,然后主要研究如何求解数学分析中的不等式问题以及探讨总结不等式的不同证明方法,并对不等式的证明方法进行归类,巧妙解决不等式的求解问题并最后归纳了不等式的多种解题技巧,为以后不等式的学习做了较为详细的归纳总结,希望能对后来读者的学习起到一定的帮助作用也是本人学习的一些心得。
二、研究内容及拟采用的方法
学习相关的知识、复习并掌握不等式的基本理论知识,了解不同的不等式求解方法。掌握相关的不等式求解方法,并优化这些算法。 拟采用方法:
1.首先要从互联网上或书籍中收集相关的不等式例子,如:利用构造变上限积分函数、利用拉格朗日中值定理、利用微分中值定理证明、积分中值定理、利用泰勒公式、用函数的极值、用函数凹凸性、利用函数单调性、利用条件极值、利用两边夹法则等方法进行不等式的证明。
2.利用已收集整理得到的不等式证明方法,总结归纳数学分析中不等式的综合求解方法,并进一步展望数学不等式的证明求解方法。
三、工作的进度安排:
工作进度:
1.第5周 - 第6周:查阅相关文献资料,准备及完成开题报告;
2.第7周 - 第9周:根据论文查找资料收集数据;开始外文文献翻译;
3.第10周 - 第14周:整理做出论文提纲,得出一些相关的结论,撰写毕业论文;完成外文文献翻译。
4.第15周:完成毕业论文初稿,打印毕业论文。
5.第16周:做好ppt,准备答辩及答辩后修改,定稿。
四、已参考文献
[1] 徐利治, 王兴华. 数学分析的方法及例题选讲【M】. 北京:高等教育出版社, 1984: 122.
[2] 刘玉琏 等. 数学分析讲义(下册) 高等教育出版社,20xx:234
[3] 葛云飞. 高等教学教程【M】. 北京:北京交通大学出版社 20xx
[4] 扈志明, 韩云端. 高等级分教程【M】. 北京:清华大学出版社1988
篇6:数学毕业论文开题报告
一、课题研究的背景和意义
运算能力是每个人都必须具备的一项基本能力,而培养学生的运算能力更是中小学数学教学的一项重要任务,也是学生今后学习数学的重要基础。根据义务教育数学课程标准要求,把掌握基本运算能力列为培养学生能力之首。而我校学生的运算能力普遍较差,翻开学生的作业,查看学生的试卷,亲自看学生演算,发现学生的诸多错误中运算的错误占了很大的比重。有的题在最后一步运算错误导致客观性试题的分数被全部扣去,主观性题目因结果不正确而被扣分;也有的学生虽然答案正确,但因为繁琐或不太合理的运算方法浪费了大量的时间。我们认为,学生的运算能力普遍较低,无疑给学生的发展造成了巨大的障碍,一个学生或一个班级数学成绩的优劣很大程度上取决于运算能力的好坏。所以数学运算能力的培养是我校数学教师研究的一个重要课题。
二、课题名称的界定和解读
学生的运算能力主要指两个方面:一是运算法则的掌握;二是运算能力的形成。学生掌握运算法则不仅要懂得按照法则如何运算,而且要懂得为什么要这样运算,所以理解是掌握运算法则的关键,而运算能力形成的主要标志是正确迅速,是在掌握运算法则的基础上采用合适的练习方法而形成的,不是学生先天就有的,所以学生的运算能力是可以通过教师来培养的。主要可以通过以下几个方面来考虑:
1、让数学运算走进生活,培养学生学习数学的兴趣。
2、激发学生学习动机,培养学生的运算能力。
3、运用多种形式加强训练,培养学生运算速度。
4、注重培养学生间的相互交流、合作、讨论的良好习惯,提高数学的教学质量。
三、课题研究的步骤和举措
本课题主要研究中小学生数学运算能力的培养。通过培养中小学生的运算能力,提高学生对数学学习的兴趣,使学生能真正从“学会”向“会学”转变。注重培养学生间的相互交流、合作、讨论的良好习惯,提高数学的教学质量。
我们课题小组研究的对象主要是我校六至八年级学生。
本课题研究从20xx年6月始至20xx年5月。
(一)准备阶段
6月——7月,结合学生平时学习中存在的实际问题,确定课题,并制定课题研究实施方案,学习有关理论,申请上报课题。
9月——12月,依据资料进行人员分工,提出设想,讨论课题可行性实施方案,完成开题报告。
(二)调查阶段
12月——1月,设计调查问卷,分别对五至八年级学生运算能力进行问卷调查,全面了解学生运算水平,并完成课题阶段性小结工作。
(三)实施阶段
3月——4月,分组实施研究方案,根据结果,集中组织交流讨论,进一步完善研究成果,并进行实施尝试并将研究成果及个人心得上升为教学论文。
(四)研究总结阶段
4月——5月,整理资料,分析研究,完成课题成果的.总结和提炼,形成研究报告,申请结题验收。
四、课题成果的预期和呈现
课题预期的研究成果:
1、阶段性成果:主要是相关的典型案例、教育叙事、教学设计、教学反思、论文以及阶段性研究报告。
2、最终研究成果:
(1)《中小学生数学运算能力培养研究》结题报告
(2)汇编《中小学生数学运算能力培养研究》结题结题鉴定材料。
篇7:数学毕业论文开题报告
一、选题的依据及课题的意义
1、选题的依据:
数学在现在科学发展中起着很重要的作用,矩阵是数学的一个分支,通过本专业开的《高等代数》这门课程的学习,对矩阵有了一定的了解。在课余时间对矩阵理论与矩阵分析等相关书籍的阅读,了解到矩阵对于分析问题解决问题有很大的帮助。矩阵理论也在很多领域里有所应用,可以说矩阵对于现代科学具有不可替代的作用。为此我们需要深入了解矩阵的一些性质及其关系。矩阵的等价、相似、合同是矩阵很重要的性质,这些性质对于解决问题有很大的帮助。
2、课题的意义:
通过对矩阵等价、相似、合同的探讨加深对矩阵的了解。也通过本次研究更深入的理解并运用矩阵理论的性质特别是矩阵的等价、相似、合同这三大性质来解决社会活动的所会遇到的问题。通过对矩阵等价、相似、合同这三大关系的探讨,能够了解它们的标准形的应用有助于提高学生利用矩阵等价、相似、合同这三大关系来分析问题和解决问题的能力。
二、研究动态及创新点
1、研究动态:
目前已经有许多国内外的知名学者对矩阵进行研究,矩阵理论对于问题的解决有着很重要的作用。就我阅读一些参考文献:《矩阵分析与应用》张贤达著、《矩阵理论及其应用》将正新,施国梁著、《矩阵论》戴华著等了解到现在已经有很多学者对矩阵有了一定的研究。这些文献对矩阵的一些理论及其性质都做了较深入的阐述,对于矩阵的等价、相似、合同一些相关的理论证明和应用都有了相关说明。
2、创新点:
通过对矩阵论及矩阵分析的学习,熟练掌握矩阵的等价、相似、合同的相关性质和判别。并且对这三者的区别与联系做了相关阐述。同时通过对矩阵的这些理论研究,总结了矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。同时还运用对矩阵的等价、相似、合同的性质对一些相关问题的简化及解决。
三、研究内容及实验方案
研究内容:
1、矩阵的概念及其一般特性。
2、矩阵等价、相似、合同三大关系的性质、判别。
3、矩阵等价、相似、合同三大关系的区别与联系。
4、矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。
5、通过运用相关理论研究解决一些简单问题的例子。
实验方案:
1、通过图书馆查找阅读相关文献并运用所学知识对其进行分析和总结。
2、通过网上查找相关信息并对其分析总结。
3、与老师和同学一同探讨矩阵的运用。
四、毕业论文工作进度
1、论文开题和选题 20xx.1.15—20xx.2.1
2、阅读参考文献 20xx.3.12—20xx.3.18
3、撰写毕业论文开题报告 20xx.3.19—20xx.3.25
4、撰写毕业论文初稿 20xx.3.26—20xx.4.29
5、毕业论文中期检查 20xx.4.30—20xx.5.6
6、完成毕业论文 20xx.5.7—20xx.5.20
7、准备毕业论文答辩20xx.5.21—20xx.5.27
8、毕业论文答辩 20xx年六月中旬
五、主要参考文献
[1] 高等代数(第二版) [M].北京大学数学系几何与代数教研室代数小组.高等教育出版社.20xx.
[2] 矩阵论 [M]. 方保镕,周继东,李医民. 清华大学出版社.20xx.
[3] 线性代数 [M]. 刘先忠, 杨明. 高等教育出版社.20xx.
[4]矩阵分析与应用[M].张贤达.清华大学出版社.20xx.
[5]矩阵论[M].张凯院,徐仲.西北工业大学出版社.20xx.
[6]Advanced Linear Algebra[M].Steven Roman.世界图书出版社.20xx.
[7]矩阵分解的应用[J].王岩,王爱青.青岛建筑工程学院学报. 20xx(2).
[8]关于矩阵的分解形式[J].屈立新.邵学院学报(自然科学版).20xx(3).
[9]正交矩阵的正交分解[J].曲茹,王淑华.高师理科学刊.20xx(2).
篇8:数学毕业论文开题报告
一、激发学生学习音乐的兴趣,开发学生的音乐潜能,促进学生和谐发展。
我国传统的音乐教育长期受专业音乐教育的影响,过于强调音乐知识传授的系统性,忽视音乐教学的审美愉悦性;教材内容重视思想性、艺术性,却没有充分兼顾中小学由于年龄、兴趣和认识水平等方面的特点而产生的独特的审美需求;教师教学手段单一,教学的理性化色彩浓厚等因素造成了学生喜欢音乐而对音乐课没有兴趣的怪现象。
兴趣是最好的老师,是能力的幼芽,是积极性的动力,是成功的沃土。正如孔子所说:“知之者不如好之者,好之者不如乐之者。”由此可见兴趣在学习中起着重要作用。在时代的呼唤下,以审美为核心,以兴趣爱好为动力。面对设计新颖、插图精美、内容丰富的教材,学生的感官首先得到了强烈的刺激,激发了学习兴趣,美的表现欲被充分调动。在音乐课堂教学中应加强以激发学生学习音乐兴趣为前提的审美基础教育,无需花大量的时间学习诸如音阶、音程、和弦、调式等过于专业化的知识,也无需提出诸如“重视中声区发声训练”、“有气息支持地歌唱”等技术性要求,以免扼杀学生学习音乐的兴趣。努力创造适宜每个青少年儿童音乐潜能开发的音乐教育环境,促使学生开发音乐智能,推动学生各方面和谐发展。
二、强调参与意识,发展学生的实践能力。
音乐课是一门实践性很强的课程,学习音乐要靠学习者亲身感悟,决不能靠教师讲述完成。正如柏拉图所说:“强迫学习的知识是不会保存的。”只有当学生真正成为学习的主人,全身心地投入到音乐的情感体验中,才能获得积极的情感因素,包括音乐爱好、价值观,并为终身音乐学习和实践奠定基础。
在传统教学过程中,学生往往被动地、被强迫地学习,参与性不高,课堂气氛讲究一个“静”字,于是造就了一批“高分低能”“人云亦云”“缺乏独立见解” 的学生。
在新的音乐教学中,理念将由“静”转变为“动”,注重学生的主体参与性,积极创造学生主动参与的环境,使学生在教师的指导下主动地、富有个性地学习。新的音乐教材在每个单元中设置增添了有趣的实践环节,通过让学生谈体会、说感受、想意境、做表演等活动,调动学生参与音乐活动的积极性,极大地开阔了学生的思维空间,为培养学生的音乐实践能力创造了条件。在教学过程中,我紧紧抓住“注重个性发展,重视音乐实践”这一基本理念,充分体现学生的主体地位,让学生多参与到学习中,并置身于音乐的美好境界中。
三、注重以学生为主体,营造宽松、愉悦的学习氛围。
教师在教学过程中应与学生积极互动,共同发展,同时注重学生的独立性和自主性的培养,并提倡在实践中学习。也就是说当今教育要以学生为本,改变过去音乐教学中以教师、书本为主的方式,取而代之以学生的生活经验、能力和需要为出发点,为学生提供更广阔的学习空间。
要营造美丽、宽松、愉悦的学习氛围。黑格尔曾说:“音乐是心情的艺术,它直接针对着心情。”只有在没有嘲笑、没有敌意的环境里,学生才能没有担心。在情感融合的课堂气氛里,学生才有可能敞开心扉,真正体会音乐所给予的美,感受音乐实践中那份宽松和愉悦。这样才能充分调动学生的积极性、创造性。音乐教师要与学生一起平等参与活动,鼓励、帮助、引导学生,而不同于在以往旧的教学模式中充当的裁判员或权威者角色。这样,既发挥了教师的主导作用,又确保了学生的主体地位。在音乐教学实践中,教师要遵循教育发展的内在规律,确定学生的主体地位。要充分利用课堂教学的主战场,激发学生学习音乐的兴趣和求知欲,充分开发学生潜能。要善于根据教学的目的和任务、学生的年龄特点及教学设备条件,合理运用各种教学方法。所选用的教学方法,既要有利于学生正确地领会和系统地掌握材料,又要有利于培养学生的技能、技巧、知识的运用能力;既要有利于激发学生的学习欲望,又要有利于培养他们的创造精神和进取精神。内容上讲究“少”而“精”,形式上讲究“多”而“活”,使学生在课堂上能够集中精力,专心听讲,当堂消化所学内容,达到事半功倍的教学效果。根据学生的特点和兴趣,适当安排少量课外作业,有助于学生巩固知识、开阔视野,培养终身学习和可持续发展的能力。课外作业的形式可多种多样,内容应该是基本型的,量不要太多,度不要太难,一开始要让学生在学得比较轻松的情况下,逐步培养学习兴趣,进而根据学生的认知发展规律、身心发展规律与获取音乐知识、音乐技能之间的联系,循序渐进地引导学生进行探究式学习,养成良好的学习习惯,掌握科学、高效的学习方法。
要重视我国中小学音乐教育事业,提高中小学学生德、智、体、美素质。以上三个方面是我的教学实践,希望我国音乐教育事业能够再上一个新的阶段。
篇9:数学毕业论文开题报告
一、课题的来源及意义
通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。
积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。
二、国内外发展状况及研究背景
国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。
三、课题研究的目标和内容
通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。
(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。
(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。
(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。
四、本课题研究的方法
课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。
五、课题的进度安排:
第一阶段:搜集资料,确定选题范围,联系指导老师(20xx秋1--7周)
第二阶段:选定题目、填写开题报告,准备开题 (20xx秋8--12周)
第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20xx秋13周--20xx春6周)
第四阶段:撰写初稿、在指导老师的指导下修改论文 (20xx春7--14周)
第五阶段:提交论文,准备答辩,论文总结 (20xx春15--16周)
篇10:数学毕业论文开题报告
1.研究背景与研究目的:
函数的一致连续性是在使用连续函数的过程中发展起来的一个概念,它是比函数在区间上连续更强的的一种连续性。而关于函数一致连续性与函数在区间上连续这两个概念令许多人容易混淆。本文通过对函数一致连续性的概念、判别方法进行较为系统和全面的论述,并在二元函数上加以推广,使得对函数一致连续的内涵有了更全面更深刻的理解和认识。最后结合一些具体实例,对其判别条件和方法加以应用。
2.研究内容与进度安排:
研究内容:
一元函数一致连续性的概念(与函数连续进行对比)
函数一致连续性的几种判别条件和方法
一致连续性推广到二元函数
一致连续性的应用(具体例题)
进度安排:
(1) 12月初至12月25日 查阅资料,讨论论文题目;
(2) 月26日至12月31日 阅读文献,最终确定论文选题,完成开题报告;
(3) 1月1日至3月31日 论文写作,完成论文的初稿;
(4) 204月1日至4月29日 对论文的格式及内容进行修改;
(5) 年4月30日 论文最后定稿;
3.拟采取的研究方法:
查阅文献确定一元函数一致连续性的定义、判别方法、性质等概念,并与函数在区间上连续进行对比;将一致连续性推广到二元函数的情形;最后选用一些例题,应用一致连续性的判别法、性质等概念解决
4.已完成的准备工作(含文献资料查阅与调研情况):
[1] 复旦大学数学系(第二版)上册. 数学分析[M]. 高等教育出版社,1983
[2] 贺自树,刘学文,杜昌友,朱大钧. 数学分析习题课选讲[M]. 重庆大学出版社,
[3] 邱德华,李水田. 函数一致连续的几个充分条件[J].大学数学,, 22(3):136~138.
[4] 高智明,刘慧瑾,蒋佩佩.关于连续性和一致连续性的一个定理[J]. 高等数学研究,,11(4)
[5] 钱吉林.数学分析题解精粹[M].武汉:崇文书局,
[6] 陈文灯,黄先开. 2011版考研数学复习指南:经济类[M]. 世界图书出版公司,
[7] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育数出版社,
[8] 刘勇. 关于一元函数一致连续性的讨论[J]. 赤峰学院学报:自然科学版,,25(11)
[9] 翟明清. 浅析二元函数的一致连续性[J]. 滁州学院学报,,6(3)
[10] 常明. 一元函数一致连续性的判定及性质[J]. 数学教学,2009,7
5.指导教师意见:
指导教师(签名):
年 月 日
6.学院意见:
学院(盖章)
年 月 日
说明:开题报告应在教师指导下由学生独立撰写,开题报告通过后方可写作论文。
篇11:数学毕业论文开题报告格式
一、研究的目的和意义
二、国内外在该方向的研究现状及分析
三、主要研究内容
四、研究方案及进度安排,预期达到的目标
(一)研究方案
(二)进度安排及预期达到的目标
第一阶段 2007.12 确定题目
第二阶段 2008.1――2008.2 收集资料
第三阶段 2008.3 完成开题报告
第四阶段 2008.4 资料搜集及整理、归纳、分析,充分与导师进行沟通,完成论文初稿,并完成论文中期报告。
第五阶段 2008.5 继续进行资料搜集及整理、归纳、分析,在导师指导下进行修改,完成论文二稿。
第六阶段 2008.6 导师审评,修改并最终定稿,进行答辩。
五、主要参考文献:
参考文献要求列出中文参考文献5篇以上
篇12:数学毕业论文优秀开题报告
数学毕业论文优秀开题报告
一、选题的依据、意义及相关研究概括:数学不等式的研究首先从欧洲国家兴起, 自从著名数学家 G. H. Hardy,J. E. Littlewood和G. Plya的著作 Inequalities由Cambridge University Press于1934年出版以来, 数学不等式理论及其应用的研究正式粉墨登场, 成为一门新兴的数学学科, 从此不等式不再是一些零星散乱的、孤立的公式综合, 它已发展成为一套系统的科学理论。
不等式是数学分析中在进行计算和证明时经常用到的且非常重要的工具,同时也是数学分析中主要研究的问题之一,可以说不等式的研究对数学分析发展起着巨大推动作用。在本论文中首先介绍了不等式的研究背景,然后主要研究如何求解数学分析中的不等式问题以及探讨总结不等式的不同证明方法,并对不等式的证明方法进行归类,巧妙解决不等式的求解问题并最后归纳了不等式的多种解题技巧,为以后不等式的学习做了较为详细的.归纳总结,希望能对后来读者的学习起到一定的帮助作用也是本人学习的一些心得。
二、研究内容及拟采用的方法
学习相关的知识、复习并掌握不等式的基本理论知识,了解不同的不等式求解方法。掌握相关的不等式求解方法,并优化这些算法。 拟采用方法:
1.首先要从互联网上或书籍中收集相关的不等式例子,如:利用构造变上限积分函数、利用拉格朗日中值定理、利用微分中值定理证明、积分中值定理、利用泰勒公式、用函数的极值、用函数凹凸性、利用函数单调性、利用条件极值、利用两边夹法则等方法进行不等式的证明。
2.利用已收集整理得到的不等式证明方法,总结归纳数学分析中不等式的综合求解方法,并进一步展望数学不等式的证明求解方法。
三、工作的进度安排:
工作进度:
1.第5周 - 第6周:查阅相关文献资料,准备及完成开题报告;
2.第7周 - 第9周:根据论文查找资料收集数据;开始外文文献翻译;
3.第10周 - 第14周:整理做出论文提纲,得出一些相关的结论,撰写毕业论文;完成外文文献翻译。
4.第15周:完成毕业论文初稿,打印毕业论文。
5.第16周:做好ppt,准备答辩及答辩后修改,定稿。
四、已参考文献
[1] 徐利治, 王兴华. 数学分析的方法及例题选讲【M】. 北京:高等教育出版社, 1984: 122.
[2] 刘玉琏 等. 数学分析讲义(下册) 高等教育出版社,2003:234
[3] 葛云飞. 高等教学教程【M】. 北京:北京交通大学出版社 2006
[4] 扈志明, 韩云端. 高等级分教程【M】. 北京:清华大学出版社1988