欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 《直线的倾斜角与斜率》导学案

《直线的倾斜角与斜率》导学案

网友 分享 时间: 加入收藏 我要投稿 点赞

《直线的倾斜角与斜率》导学案

一、教学内容分析

“直线的倾斜角和斜率”一节是解析几何的入门课,担负着开启全章的重任,因此在本课时的教学中不但要落实显性知识,更重要的是要揭示隐性知识:研究解析几何的基本方法――坐标法。

本课时涉及到两个概念――倾斜角和斜率,它们都是反映直线相对于x轴正方向的倾斜程度的,倾斜角是从“形”的角度刻画直线的倾斜程度,而斜率是从“数”的角度刻画直线的倾斜程度。二者联系的桥梁是正切函数值,进一步可以用直线上两点的坐标表示直线的斜率。

倾斜角是一个桥梁,利用它可以将两直线的位置关系问题转化为斜率问题。而在建立直线方程,研究直线的几何性质时斜率起着重要的作用。因此,坐标法和斜率是本课时的核心概念。据此确定本课时的教学重点是:

使学生经历几何问题代数化的过程,并初步了解解析几何研究问题的基本思想方法,体会坐标法。

理解斜率的定义,掌握过两点的直线的斜率公式。

二、教学目标分析

    1. 理解倾斜角的概念,体会在直角坐标系下,以坐标轴为“参照系”,用统一的标准刻画几何元素的思想方法。 

    2. 理解斜率的定义和斜率公式,经历几何问题代数化的过程,了解解析法的基本步骤,感受解析几何的思想方法。

    3.通过解析几何发展史的简单介绍,渗透数学文化教育。

三、教学问题诊断分析

    平面几何中,“两点确定一条直线”是没有“参照系”的,如何使学生在这一知识的基础上,顺利、自然地过渡到直角坐标系下用一个点和倾斜角确定一条直线,是比较困难的。事实上,已知直线的倾斜角就相当于已知直线的方向,因此已知“两个点可以确定直线的方向”,这与“一个点和直线的方向确定一条直线”是一致的。在教学中应注意引导学生认识到这种联系。

    函数是以图助数,利用图形使代数问题直观化,解析几何则是以数助形,用坐标法研究几何问题。它们都体现了数形结合思想,但角度不同。学生知道一次函数的图象是一条直线,这里研究的是直线的方程,学生容易将二者混淆,误认为方程就是一次函数。因此在教学时要注意澄清二者的不同。

       基于上述分析,确定本课时的教学难点为:

    直角坐标系下对刻画直线的几何要素的认识――倾斜角概念的形成;用坐标刻画倾斜角的方法――斜率概念本质的认识。

四、教学过程设计

(一)引言

在几何问题的研究中,我们常常直接依据几何图形中点、线、面的关系研究几何图形的性质。现在我们采用另一种研究方法――坐标法来研究几何问题。坐标法是在坐标系的基础上,把几何问题转化为代数问题,通过代数运算研究几何图形性质的一种方法,这门科学称为解析几何。

解析几何是17世纪法国数学家笛卡尔和费马共同创立的。解析几何的创立是数学发展史上的一个重要的里程碑,数学从此由常量数学进入变量数学时期。解析几何由此成为近代数学的基础之一。

本章我们研究的是直线与方程,这是我们在初中就熟悉的知识,当时是在函数的观点下进行,是借助于“形”研究“数”的问题,从今天开始要转化一个角度,利用坐标系,借助于“数”研究“形”的问题,也就是用“坐标法”进行研究。本课时我们将研究最基础的知识――直线的倾斜角和斜率,并在其学习过程中体会和感受解析几何研究问题的基本方法和思想。

3页,当前第1123
221381
领取福利

微信扫码领取福利

《直线的倾斜角与斜率》导学案

微信扫码分享