欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 六年级上册数学教案模板

六年级上册数学教案模板

网友 分享 时间: 加入收藏 我要投稿 点赞

六年级上册数学教案模板(5篇)

教学是一种鼓励学生进行艺术欣赏和创造性表达的过程,培养他们的审美情趣和艺术创作能力。这里给大家分享一些关于六年级上册数学教案模板,供大家参考学习。

六年级上册数学教案模板

六年级上册数学教案模板精选篇1

一、引入课题

日历已经是我们日常生活、生产中必不可少的工具,我们聪明的祖先,在上千年前就根据日月星辰的变化规律,制定了这个记载时间流逝的工具。今天,就让我们一起来探索日历中的规律吧!

首先,我们先来看一下这个月历:

二、观察月历,规律分类

通过观察月历,我们发现月历中所呈现的规律特别多,但归纳起来,大体可以分为以下几种类型:

1横向型

2.纵向型

3.左上到右下型

4.左下到右上型

5.综合型,比如“工”字型,“ 3×3”方框型等。

二、观察月历,探索规律

1.横向型

如图所示,如果我们横向圏定三个数字,它有什么规律呢?因为横向是一列连续的正整数,所以后边的数总比前边的数大1。

若前面的数是16的话,则中间的数为17,最后面的数是18,若换成字母,中间数为X,则前一个数为X-1,后面一个数为X+1。三个数的和为中间一个数的3倍。

2.纵向型

如果我们纵向圏定三个数字,它有什么规律呢?因为纵向是不同周次的同一天,所以下边的数总比上边的数大7。

若中间的数是8的话,则上面的数为1,下面的数是15,若换成字母,中间数为X,则上面的数为X-7,下面的数为X+7。三个数的和为中间一个数的3倍。

3.左上到右下型

如果我们从左上到右下圏定三个数字,它有什么规律呢?显然,左边的数字总比右边的数字小1,上边的数字又总比下边的数字小1,所以右下的数总比左上的数大8。

当然,我们也可以这样思考,上面的数总比下面的数小7,左边的数总比右边的数小1,所以右下的数总比左上的数大8。三个数的和为中间一个数的3倍。

若中间的数是9的话,则左上的`数为1,右下的数是17,若换成字母,中间字母为X,则左上的数为X-8,右下数为X+8。

4.左下到右上型

如果我们从左下到右上圏定三个数字,它又有什么规律呢?显然,左边的数总比右边的数小1,下面的数又总比上面的数大7,所以,右上的数总比左下的数小6。我们也可以这样去理解,下面的数总比上面的数大7,左边的数又总比右边的数小1,所以,右上的数总比左下的数小6。

若中间的数是8的话,则左下的数为14,右上的数是2,若换成字母,中间的数为X,则左下的数为X+6,右上数为X-6。三个数的和为中间一个数的3倍。

5.综合型

(1)规律一、规律二综合的:如“十”字型。

若中间一个数为18,则左边的数为17,右边的数为19;上面的数为11,下面的数为25。用字母表示,若中间的数为X,则左边的数为X-1,右边的数为X+1,上边的数为X-7,下面的数为X+7。5 个数的和为中间数的5倍。

(2)规律三、规律四综合的:如 ” X ” 型。

若中间一个数为16,则左上角的数为8,右上角的数为10,左下角的数为22,右下角的数为24,若中间的数为X,,则左上角的数为X-8,右上角的数为X-6,左下角的数为X+6,右下角的数为X+8, 5 个数的和为中间数的5倍。

(3)规律一、规律二、规律三、规律四综合的:比如:“工”字型; “H ” 型; “3__3”方框型等。

下面我们以“3__3”方框型为例来探索它的规律:若中间的数字为10,则它前面的数字为9,后面的数字为11,第一排的数字依次为2,3,4,第三排的数字依次为16,17,18,若中间的数字为X, 则它前面的数字为X-1,后面的数字为X+1,第一排的数字依次为X-8,X-7,X-6,第三排的数字依次为X+6,X+7,X+8.

除以上几种类型外,常见的类型还有 “ L ” 型、 “ V ” 字型、 “ M ” 型、 “ W ” 型等,有兴趣的同学可以结合本节课的学习继续进行探索。

三、课时小结,巩固提升

下面我们把学习的内容回顾一下:

(1)横向型:从左到右,右边的数总比左边的数大1,三个数之和是中间数的3倍。

(2)纵向型:从上到下,下边的数总比上边的数大7,三个数之和是中间数的3倍。

(3)左上到右下型:从左上到右下,右下的数总比左上的数大8,三个数之和是中间数的3倍。

(4)左下到右上型:从左下到右上,右上的数总比左下的数小6,三个数之和是中间数的3倍。

四、教师寄语 鼓励成长

今天的日历之旅一定对大家有很多启发,希望同学们能珍惜时间,不畏艰险,迎难而上!愿同学越来越聪明!

六年级上册数学教案模板精选篇2

教学目标:

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点:

重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

难点:理解可以用分数表示两个数相除的商。

教学过程:

一、导入揭题。

1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

二、探索新知

1、教学例1

(1)课件出示例1

把一个蛋糕平均分给3人,每人分得多少个?

(2)同桌讨论交流:根据分数的`意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

(3)汇报讨论结果

(4)观察这两种解法有什么联系?

2、教学例2、

把3个饼平均分给4个孩子,每个孩子分得多少个?

(1)平均分同样可以列式为:3÷4。

(2)小组合作探究:3÷4的商能不能用分数表示呢?

(3)通过进一步探究,你发现分数与除法有什么关系了吗?

师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

三、拓展应用

一个正方形的周长是64cm,它的边长是周长的几分之几?

四、总结

通过这节课的学习,你有什么收获?

五、作业布置

完成教材第50页"做一做"

六年级上册数学教案模板精选篇3

教学目标

知识目标:

体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

能力目标:

培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

情感目标:

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点

整数除以分数的.计算法则推导过程。

【教学难点】

理解一个数除以分数的计算法则的推导过程

教学过程

一、创设情境导入新课

唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

二、自主探究合作交流

1、小组活动(1)出示教材27页“分一分”的第(1)、(2)题学生拿出准备好的圆片代表饼,动手分一分。

每2张一份,可以分成多少份?4÷2=2(份)

每1张一份,可以分成多少份?4÷1=4(份)

师:每1/2张一份,可以分成多少份?

学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

师:每1/4张一份,可以分成多少份?

学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

4÷1/4=16(份)

(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

(2)学生独立完成教材28页“填一填”“想一想”师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

生:一个数除以分数等于乘这个分数的倒数。

1、学生独立完成28页的“试一试”。

集体反馈,同桌之间订正。

师:通过刚才的计算你发现了什么?

生:一个数除以一个数(零除外)等于乘这个数的倒数。

三、课堂练习,巩固运用书本练一练

四、课堂小结畅谈收获

聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?(学生谈收获)

五、板书设计

整数除以分数

除以真分数商大于整数

整数除以分数

除以假分数商小于整数

除以1商等于整数

六、教学反思

本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。参赛者信息:姓名:杨毛毛

六年级上册数学教案模板精选篇4

一教学目标

1.结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。

2.借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。

3.在探索与交流活动中培养观察、推理的能力。

二学情分析

1.由于分数乘法的计算过程要比整数乘法的极端过程复杂,因此学生对于这方面知识的学习有很大的吃力感,所以加强学生的计算能力是学习这方面知识的保证。

2.学生认知发展分析:小学学生现在的认知基础还是以整数乘法为主,他们习惯于学习整数乘法方面的知识和解题方法与思路。因此学习本节课内容主要从整数入手,逐渐加强学生对分数乘法的认识。

3.学生认知障碍点:学生在刚开始学分数乘法时可能有时想不到先约分,后计算。

三重点难点

教学重点:理解他数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:理解分数乘整数的计算方法。

四教学过程

4.1分数乘整数

4.1.1教学活动

活动1【导入】复习旧知,引出课题。

1.复习题。

(1)列式计算。

5个12是多少?9个11是多少?8个6是多少?

提问:你还记得整数乘法的'含义吗?

(2)计算:

提问:分母相同的分数相加,如何计算?

2.引出课题。

第二道题还可以怎么计算?今天我们就来学习分数乘法。

活动2【活动】创设情境,探究分数乘整数

1.教学分数乘整数的意义。

出示例1,自由读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?

(1)分析演示:

题中的:“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思什么?(每人吃了整个蛋糕的)

每人吃了整个蛋糕的,可以画图表示吗?怎样表示?

3个人呢?

求3人一共吃了多少个,

就是要求什么?怎样列式计算?

用加法计算:+ + = = (个)

求3个的和是多少,还可以怎样列式?

用乘法计算:×3

这个乘法算式与我们之前学习的有什么不同?分数乘整数与整数乘法意义相同,都表示求几个相同加数的和的简便运算。区别在于,在整数乘法中,相同加数是整数,在分数乘整数中,是分数。板书课题:分数乘整数

2.教学分数乘整数的计算法则。

(1)推导算理:由分数乘整数的意义导入。

问:怎样计算?分数乘整数第一次遇到,能转化成我们学过的式子来计算吗?为什么?

引导学生说出表示求3个的和。板书:+ + 。

学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)

补充两个例子:若每人吃个,×3=

若每人吃个,×3=

今后每次都要转化成分数加法来计算吗?分数乘整数的计算有没有什么规律可循呢?

(边说边加虚线)

(2)引导观察:分子部分、分母与算式中两个数有什么关系?(互相讨论)

汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。

(3)概括总结计算方法。(同桌互说)

请学生总结。教师板书。

(4)介绍约分及注意事项。

根据的计算过程,指出:计算过程中,分子、分母能约分的可以先约分,然后再乘,结果相同。教师示范,注意约分书写格式:约得的数要与原数上下对齐。追问:你知道为什么先约分,再相乘,结果不会变吗?(还是根据分数的基本性质)那么请你比一比,想一想,计算结果约分和在过程中约分,你倾向于哪一种,请说明理由。

3.反馈练习:练习一第1题、做一做。

活动3【活动】全课小结

今天学习的主要内容是什么?关于分数乘整数有哪些收获?

活动4【练习】课堂作业

A部分:练习一第2、3题。

B部分:青岛地铁2号线将于20__年底实现东段通车,全线共设车站22个,平均每两个站之间距离是五分之六千米。青岛地铁2号线全程长是多少千米?

六年级上册数学教案模板精选篇5

教学目标:

1.组织学生动手实践、自主探究,明确把谁看作单位“1”,引导学生采用数形结合的方法——画线段图分析数量之间的关系。

2.引导学生从分数乘法意义的角度思考,理解“求一个数的几分之几是多少”应该用乘法计算,学会解决“求一个数的几分之几是多少”的实际问题。

3.使学生能综合运用所学的知识解决一些简单的问题,逐渐形成技能,增强应用意识;引导学生形成一些解决问题的策略,促进学生分析、判断和推理能力的发展。

重点难点:

1.掌握解决求一个数的几分之几是多少的方法,能解决相关实际问题;

2.理解算理,会用线段图正确地分析题意。

教学方法:

讲授法、讨论法、谈话法、探究法

教学准备:

教师准备多媒体课件。

教学过程:

一、回顾旧知,导入新课

谈话:我们在信息窗1和信息窗2已经初步解决了分数乘整数和分数乘分数的问题,还会做吗?

出示练习:20的`4/5是多少?6的2/3 是多少?

请同学说一说这两个题为什么用乘法计算。

谈话:同学们,我们知道,已知求一个数的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,运用这一知识还可以解决什么问题呢?今天我们就来一起研究。

二、合作探究,获取新知

(一)创设情境,提出问题

谈话:在学校举行的泥塑大赛中,同学们制作出许多精美

的作品,请看大屏幕。

出示课本10页的情境图和信息。

谈话:从图中你获取了哪些信息?

谈话:根据上面的信息你能提出什么数学问题?

学生提出问题,教师板书:一班男生做了多少件?二班女生做了多少件?

谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。

(二)探究方法,建立模型

1.解决第一个问题:一班男生做了多少件?

谈话:请同学们尝试用自己喜欢的方法先来分析题目中数量之间的关系,再试着解决这个问题,不仅要得出答案,还要把道理说清楚。

(1)讨论操作。学生分小组进行尝试活动,教师巡视指导,了解信息。

(2)小组内说想法。

(3)交流展示。指名到展示台前进行汇报。

方法一:画线段图分析数量关系

谈话:你是怎样画图的?先画什么?再画什么?怎样想的?

学生回答的过程中,教师重点引领学生理解谁是找单位“1”,如何找单位“1”?如何在线段图中表示出已知条件“3/5”?

谈话:线段图是个很好的工具,同学们用的非常棒!它可以清楚表示出题中数量间的关系,这个工具用的好,即使以后解决一些复杂的问题也会得心应手。

方法二:不借助于直观图,直接列式解决

谈话:你是怎样想的?教师适时引领:题中哪句话是关键句?谁是单位“1”?“3/5”这个分数在题中的具体意义是什么?为什么用乘法做?

(男生做了总数的3/5,总数是单位“1”,把总数平均分成5 份,求其中的3份,也就是求15的3/5是多少,所以15×3/5)

2.学生自己解决第二个问题:二班女生做了多少件?

谈话:小组交流,自己想办法来分析题意,解决问题。组织学生汇报交流,说自己的分析思路,其他小组可以给予完善补充。

着重引导学生理解:谁是单位“1”?怎么找单位“1”?为什么画两条线段?结合学生汇报,教师课件动态演示P11图示

(三)观察比较

谈话:你在分析解决这两个问题时,有哪些相同点?哪些不同点?

学生回答时,教师适时引领:相同点都是“求一个数的几分之几是多少”,用乘法做;不同点是第一组是部分与整体的关系,通常画一条线段图来表示它们之间的关系,第二组是两种量之间的关系,通常画两条线段图来表示它们之间的关系。画线段图时通常先画出表示单位“1”的量。

三、应用模型,解决问题

1.课本11页自主练习2:出示短吻鳄照片

帮助学生理解题意,引导学生利用画线段图的办法分析数量关系,自己列式解决问题。

2.自主练习4:这一题和第2题属于同一类型,都是研究部分与整体的关系,画一条线段图,让学生自主完成,全班交流自己的想法和思路。

3.自主练习

这一题与前两题有什么不同之处?研究的是两个数量之间的关系,应该怎样用线段图表示?

尝试自主解决,全班交流,说出自己的想法和思路。

四、引导总结,构建网络

谈话:我们应该如何解决“求一个数的几分之几是多少”的问题?(引导学生总结解决问题的方法)

五、作业布置

自主练习5、6题

板书设计:

求一个数的几分之几是多少”的实际问题

221381
领取福利

微信扫码领取福利

六年级上册数学教案模板

微信扫码分享