六年级上册数学教案模板(5篇)
教学是一种鼓励学生进行艺术欣赏和创造性表达的过程,培养他们的审美情趣和艺术创作能力。这里给大家分享一些关于六年级上册数学教案模板,供大家参考学习。
六年级上册数学教案模板精选篇1
一、引入课题
日历已经是我们日常生活、生产中必不可少的工具,我们聪明的祖先,在上千年前就根据日月星辰的变化规律,制定了这个记载时间流逝的工具。今天,就让我们一起来探索日历中的规律吧!
首先,我们先来看一下这个月历:
二、观察月历,规律分类
通过观察月历,我们发现月历中所呈现的规律特别多,但归纳起来,大体可以分为以下几种类型:
1横向型
2.纵向型
3.左上到右下型
4.左下到右上型
5.综合型,比如“工”字型,“ 3×3”方框型等。
二、观察月历,探索规律
1.横向型
如图所示,如果我们横向圏定三个数字,它有什么规律呢?因为横向是一列连续的正整数,所以后边的数总比前边的数大1。
若前面的数是16的话,则中间的数为17,最后面的数是18,若换成字母,中间数为X,则前一个数为X-1,后面一个数为X+1。三个数的和为中间一个数的3倍。
2.纵向型
如果我们纵向圏定三个数字,它有什么规律呢?因为纵向是不同周次的同一天,所以下边的数总比上边的数大7。
若中间的数是8的话,则上面的数为1,下面的数是15,若换成字母,中间数为X,则上面的数为X-7,下面的数为X+7。三个数的和为中间一个数的3倍。
3.左上到右下型
如果我们从左上到右下圏定三个数字,它有什么规律呢?显然,左边的数字总比右边的数字小1,上边的数字又总比下边的数字小1,所以右下的数总比左上的数大8。
当然,我们也可以这样思考,上面的数总比下面的数小7,左边的数总比右边的数小1,所以右下的数总比左上的数大8。三个数的和为中间一个数的3倍。
若中间的数是9的话,则左上的`数为1,右下的数是17,若换成字母,中间字母为X,则左上的数为X-8,右下数为X+8。
4.左下到右上型
如果我们从左下到右上圏定三个数字,它又有什么规律呢?显然,左边的数总比右边的数小1,下面的数又总比上面的数大7,所以,右上的数总比左下的数小6。我们也可以这样去理解,下面的数总比上面的数大7,左边的数又总比右边的数小1,所以,右上的数总比左下的数小6。
若中间的数是8的话,则左下的数为14,右上的数是2,若换成字母,中间的数为X,则左下的数为X+6,右上数为X-6。三个数的和为中间一个数的3倍。
5.综合型
(1)规律一、规律二综合的:如“十”字型。
若中间一个数为18,则左边的数为17,右边的数为19;上面的数为11,下面的数为25。用字母表示,若中间的数为X,则左边的数为X-1,右边的数为X+1,上边的数为X-7,下面的数为X+7。5 个数的和为中间数的5倍。
(2)规律三、规律四综合的:如 ” X ” 型。
若中间一个数为16,则左上角的数为8,右上角的数为10,左下角的数为22,右下角的数为24,若中间的数为X,,则左上角的数为X-8,右上角的数为X-6,左下角的数为X+6,右下角的数为X+8, 5 个数的和为中间数的5倍。
(3)规律一、规律二、规律三、规律四综合的:比如:“工”字型; “H ” 型; “3__3”方框型等。
下面我们以“3__3”方框型为例来探索它的规律:若中间的数字为10,则它前面的数字为9,后面的数字为11,第一排的数字依次为2,3,4,第三排的数字依次为16,17,18,若中间的数字为X, 则它前面的数字为X-1,后面的数字为X+1,第一排的数字依次为X-8,X-7,X-6,第三排的数字依次为X+6,X+7,X+8.
除以上几种类型外,常见的类型还有 “ L ” 型、 “ V ” 字型、 “ M ” 型、 “ W ” 型等,有兴趣的同学可以结合本节课的学习继续进行探索。
三、课时小结,巩固提升
下面我们把学习的内容回顾一下:
(1)横向型:从左到右,右边的数总比左边的数大1,三个数之和是中间数的3倍。
(2)纵向型:从上到下,下边的数总比上边的数大7,三个数之和是中间数的3倍。
(3)左上到右下型:从左上到右下,右下的数总比左上的数大8,三个数之和是中间数的3倍。
(4)左下到右上型:从左下到右上,右上的数总比左下的数小6,三个数之和是中间数的3倍。
四、教师寄语 鼓励成长
今天的日历之旅一定对大家有很多启发,希望同学们能珍惜时间,不畏艰险,迎难而上!愿同学越来越聪明!
六年级上册数学教案模板精选篇2
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
重点:掌握分数与除法的关系,会用分数表示两个数相除的商。
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知
1、教学例1
(1)课件出示例1
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的`意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?
三、拓展应用
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结
通过这节课的学习,你有什么收获?
五、作业布置
完成教材第50页"做一做"
六年级上册数学教案模板精选篇3
教学目标
知识目标:
体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点
整数除以分数的.计算法则推导过程。
【教学难点】
理解一个数除以分数的计算法则的推导过程
教学过程
一、创设情境导入新课
唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?
二、自主探究合作交流
1、小组活动(1)出示教材27页“分一分”的第(1)、(2)题学生拿出准备好的圆片代表饼,动手分一分。
每2张一份,可以分成多少份?4÷2=2(份)
每1张一份,可以分成多少份?4÷1=4(份)
师:每1/2张一份,可以分成多少份?
学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)
师:每1/4张一份,可以分成多少份?
学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。
4÷1/4=16(份)
(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。
(2)学生独立完成教材28页“填一填”“想一想”师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?
生:一个数除以分数等于乘这个分数的倒数。
1、学生独立完成28页的“试一试”。
集体反馈,同桌之间订正。
师:通过刚才的计算你发现了什么?
生:一个数除以一个数(零除外)等于乘这个数的倒数。
三、课堂练习,巩固运用书本练一练
四、课堂小结畅谈收获
聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?(学生谈收获)
五、板书设计
整数除以分数
除以真分数商大于整数
整数除以分数
除以假分数商小于整数
除以1商等于整数
六、教学反思
本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。参赛者信息:姓名:杨毛毛
六年级上册数学教案模板精选篇4
一教学目标
1.结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2.借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3.在探索与交流活动中培养观察、推理的能力。
二学情分析
1.由于分数乘法的计算过程要比整数乘法的极端过程复杂,因此学生对于这方面知识的学习有很大的吃力感,所以加强学生的计算能力是学习这方面知识的保证。
2.学生认知发展分析:小学学生现在的认知基础还是以整数乘法为主,他们习惯于学习整数乘法方面的知识和解题方法与思路。因此学习本节课内容主要从整数入手,逐渐加强学生对分数乘法的认识。
3.学生认知障碍点:学生在刚开始学分数乘法时可能有时想不到先约分,后计算。
三重点难点
教学重点:理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:理解分数乘整数的计算方法。
四教学过程
4.1分数乘整数
4.1.1教学活动
活动1【导入】复习旧知,引出课题。
1.复习题。
(1)列式计算。
5个12是多少?9个11是多少?8个6是多少?
提问:你还记得整数乘法的'含义吗?
(2)计算:
提问:分母相同的分数相加,如何计算?
2.引出课题。
第二道题还可以怎么计算?今天我们就来学习分数乘法。
活动2【活动】创设情境,探究分数乘整数
1.教学分数乘整数的意义。
出示例1,自由读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)分析演示:
题中的:“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思什么?(每人吃了整个蛋糕的)
每人吃了整个蛋糕的,可以画图表示吗?怎样表示?
3个人呢?
求3人一共吃了多少个,
就是要求什么?怎样列式计算?
用加法计算:+ + = = (个)
求3个的和是多少,还可以怎样列式?
用乘法计算:×3
这个乘法算式与我们之前学习的有什么不同?分数乘整数与整数乘法意义相同,都表示求几个相同加数的和的简便运算。区别在于,在整数乘法中,相同加数是整数,在分数乘整数中,是分数。板书课题:分数乘整数
2.教学分数乘整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问:怎样计算?分数乘整数第一次遇到,能转化成我们学过的式子来计算吗?为什么?
引导学生说出表示求3个的和。板书:+ + 。
学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)
补充两个例子:若每人吃个,×3=
若每人吃个,×3=
今后每次都要转化成分数加法来计算吗?分数乘整数的计算有没有什么规律可循呢?
(边说边加虚线)
(2)引导观察:分子部分、分母与算式中两个数有什么关系?(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
(3)概括总结计算方法。(同桌互说)
请学生总结。教师板书。
(4)介绍约分及注意事项。
根据的计算过程,指出:计算过程中,分子、分母能约分的可以先约分,然后再乘,结果相同。教师示范,注意约分书写格式:约得的数要与原数上下对齐。追问:你知道为什么先约分,再相乘,结果不会变吗?(还是根据分数的基本性质)那么请你比一比,想一想,计算结果约分和在过程中约分,你倾向于哪一种,请说明理由。
3.反馈练习:练习一第1题、做一做。
活动3【活动】全课小结
今天学习的主要内容是什么?关于分数乘整数有哪些收获?
活动4【练习】课堂作业
A部分:练习一第2、3题。
B部分:青岛地铁2号线将于20__年底实现东段通车,全线共设车站22个,平均每两个站之间距离是五分之六千米。青岛地铁2号线全程长是多少千米?
六年级上册数学教案模板精选篇5
教学目标:
1.组织学生动手实践、自主探究,明确把谁看作单位“1”,引导学生采用数形结合的方法——画线段图分析数量之间的关系。
2.引导学生从分数乘法意义的角度思考,理解“求一个数的几分之几是多少”应该用乘法计算,学会解决“求一个数的几分之几是多少”的实际问题。
3.使学生能综合运用所学的知识解决一些简单的问题,逐渐形成技能,增强应用意识;引导学生形成一些解决问题的策略,促进学生分析、判断和推理能力的发展。
重点难点:
1.掌握解决求一个数的几分之几是多少的方法,能解决相关实际问题;
2.理解算理,会用线段图正确地分析题意。
教学方法:
讲授法、讨论法、谈话法、探究法
教学准备:
教师准备多媒体课件。
教学过程:
一、回顾旧知,导入新课
谈话:我们在信息窗1和信息窗2已经初步解决了分数乘整数和分数乘分数的问题,还会做吗?
出示练习:20的`4/5是多少?6的2/3 是多少?
请同学说一说这两个题为什么用乘法计算。
谈话:同学们,我们知道,已知求一个数的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,运用这一知识还可以解决什么问题呢?今天我们就来一起研究。
二、合作探究,获取新知
(一)创设情境,提出问题
谈话:在学校举行的泥塑大赛中,同学们制作出许多精美
的作品,请看大屏幕。
出示课本10页的情境图和信息。
谈话:从图中你获取了哪些信息?
谈话:根据上面的信息你能提出什么数学问题?
学生提出问题,教师板书:一班男生做了多少件?二班女生做了多少件?
谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。
(二)探究方法,建立模型
1.解决第一个问题:一班男生做了多少件?
谈话:请同学们尝试用自己喜欢的方法先来分析题目中数量之间的关系,再试着解决这个问题,不仅要得出答案,还要把道理说清楚。
(1)讨论操作。学生分小组进行尝试活动,教师巡视指导,了解信息。
(2)小组内说想法。
(3)交流展示。指名到展示台前进行汇报。
方法一:画线段图分析数量关系
谈话:你是怎样画图的?先画什么?再画什么?怎样想的?
学生回答的过程中,教师重点引领学生理解谁是找单位“1”,如何找单位“1”?如何在线段图中表示出已知条件“3/5”?
谈话:线段图是个很好的工具,同学们用的非常棒!它可以清楚表示出题中数量间的关系,这个工具用的好,即使以后解决一些复杂的问题也会得心应手。
方法二:不借助于直观图,直接列式解决
谈话:你是怎样想的?教师适时引领:题中哪句话是关键句?谁是单位“1”?“3/5”这个分数在题中的具体意义是什么?为什么用乘法做?
(男生做了总数的3/5,总数是单位“1”,把总数平均分成5 份,求其中的3份,也就是求15的3/5是多少,所以15×3/5)
2.学生自己解决第二个问题:二班女生做了多少件?
谈话:小组交流,自己想办法来分析题意,解决问题。组织学生汇报交流,说自己的分析思路,其他小组可以给予完善补充。
着重引导学生理解:谁是单位“1”?怎么找单位“1”?为什么画两条线段?结合学生汇报,教师课件动态演示P11图示
(三)观察比较
谈话:你在分析解决这两个问题时,有哪些相同点?哪些不同点?
学生回答时,教师适时引领:相同点都是“求一个数的几分之几是多少”,用乘法做;不同点是第一组是部分与整体的关系,通常画一条线段图来表示它们之间的关系,第二组是两种量之间的关系,通常画两条线段图来表示它们之间的关系。画线段图时通常先画出表示单位“1”的量。
三、应用模型,解决问题
1.课本11页自主练习2:出示短吻鳄照片
帮助学生理解题意,引导学生利用画线段图的办法分析数量关系,自己列式解决问题。
2.自主练习4:这一题和第2题属于同一类型,都是研究部分与整体的关系,画一条线段图,让学生自主完成,全班交流自己的想法和思路。
3.自主练习
这一题与前两题有什么不同之处?研究的是两个数量之间的关系,应该怎样用线段图表示?
尝试自主解决,全班交流,说出自己的想法和思路。
四、引导总结,构建网络
谈话:我们应该如何解决“求一个数的几分之几是多少”的问题?(引导学生总结解决问题的方法)
五、作业布置
自主练习5、6题
板书设计:
求一个数的几分之几是多少”的实际问题