人教版七年级上册数学教案大全5篇
线性代数是研究向量、线性方程组和线性变换的分支,广泛应用于几何、物理和计算机科学等领域。这里给大家分享一些关于人教版七年级上册数学教案,供大家参考学习。
人教版七年级上册数学教案精选篇1
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一 知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二 问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1.找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4.找相等关系:
这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)
5.列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.
3x-4x=-25-20(2)
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三 解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四 巩固提高
1.第91页练习(1)(2)
2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?
3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1.学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3.用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
人教版七年级上册数学教案精选篇2
一.教学目标
1.知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。
3.情感态度与价值观
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重难点及关键:
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
关键:通过实例引入,循序渐进,加强法则的应用.
三、教学方法
发现法、归纳法、与师生轰动紧密结合.
四、教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
五、教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是
(+3)+(+1)=+4.
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.
(三)应用举例 变式练习&&</p>
例1 口答下列算式的结果
(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.
学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
例2(教科书的例1)
解:(1)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)
=-(3+9) (和取负号,把绝对值相加)
=-12.
(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)
=-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)
=-0.8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)作业设计
1.计算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.
3.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
(六)板书设计
1.3.1有理数加法
一、加法法则二、例1例2例3
人教版七年级上册数学教案精选篇3
第一课时
三维目标
一、知识与技能
理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。
二、过程与方法
引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。
三、情感态度与价值观
培养学生主动探索的良好学习习惯。
教学重、难点与关键
1.重点:掌握有理数加法法则,会进行有理数的加法运算。
2.难点:异号两数相加的法则。
3.关键:培养学生主动探索的良好学习习惯。
四、教学过程
一、复习提问,引入新课
1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?
2.比较下列每对数的大小。
(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。
五、新授
在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?
要解决这个问题,先要分别求出它们的净胜球数。
红队的净胜球数为:4+(-2);
蓝队的净胜球数为:1+(-1)。
这里用到正数与负数的加法。
怎样计算4+(-2)呢?
下面借助数轴来讨论有理数的加法。
看下面的问题:
一个物体作左右方向的运动,我们规定向左为负、向右为正。
(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?
人教版七年级上册数学教案精选篇4
教学目标:
知识与技能:
通过实例,感受引入负数的必要性;会判断一个数是正数还是负数;会用正负数表示互为相反意义的量。
过程与方法:
通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。
情感态度与价值观:
通过归纳,让学生体会思维的一般过程是从具体到抽象;从特殊到一般的过程,使他们培养良好的思维习惯和探索精神,通过对学生进行爱国主义思想教育,培养学生良好的个性品质。
教学重点:
会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义。
教学难点:
理解负数、数0表示的量的意义。
教村分析:
会判断正数、负数及理解对数0表示量的意义,能为下一节课讲述有理数的分类,大小的比较等打下基础,因此成为本节课的重点,由于用负数表示实际问题对学生来说很不习惯,因此成为本节课的教学难点。本节课是在小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接,而且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节课从学生熟悉的实例出发,通过一系列探索和讨论过程,着重培养学生学会观察、分析、总结和归纳,使传授知识与培养能力融为一体,使学生不仅学到科学探究的方法,而且让他们在学习过程中获得愉快和进步,同时培养他们爱国主义精神。
教学方法:
情境教学法、启发式教学法、讨论法
课时安排:
一课时
教具:
投影仪(电脑)
环节教师活动学生活动设计意图
创设情境导入新课
鼓励每组派两名同学到讲台前,按照教师的指令进行表演活动,看哪一组获胜。
教师说出指令:
向前一步,向后一步;
向前两步,向后两步;
向前三步,向后一步;
向前四步,向后两步;
教师根据学生的活动情况,也参与表演,适当加以引导启发,用符号(加减号)表示。
活动后,评选出速记最快,方法最好的同学。
一、初步了解,认识具有相反意义的量
启发学生举出生活中常遇到的一些具有相反意义的量,教师针对学生列举的例子给予适当点评,鼓励。
判断一些量是否具有相反意义:(出示幻灯片一)
例1、判断下面各对量是不是具有相反意义的量
(1)温度是零上25℃和零下18℃;
(2)某条河的水位上升0.7米和下降1.2米。
(3)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米。
教师针对学生的答题情况给予评价。
二、具有相反意义的量的表示方法:
教师综上进行引导:
一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在表示这量的前面放上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在表示这个量的前面放上一个“-”(读作“负”)来表示(零除外)
鼓励学生任意结组,举例说明,巩固练习。
做一做:(出示幻灯片二)
1、请你仿照天气预报中对气温的表示方法,完成下表:
意义:向东走1.8千米,向西走3千米,收入14200元支出4745元,水位上升30厘米水位下降50厘米,表示+1.8千米+14200元+30厘米。
2、请你把下面句子中的量用“+”或“-”的数表示出来
(1)一辆公共汽车在一个停车站下去10个乘客
(2)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米
(3)商品价格上涨10%和下降15%.
教师对学生的回答,给予鼓励性评价,最后板书答案。
三、观察归纳、理解正数和负数
议一议:(出示幻灯片三)
观察由前面的问题得到的数:
-3,4745,50,18,+8844。43,-155,+10%,-15%哪些数的形式与以前学过的数有区别?
教师根据学生的回答,归纳总结,同时板书课题及正、负数的概念。
在已学过的数(0除外)的前面添上“-”得到的这样的数叫做负数;在已学过的数(0除外)的前面添上一个“+”得到的,这样的数叫做正数。
教师强调两点:
1、0既不是正数,也不是负数。
2、正数中的“+”可以省略不写。
四、巩固训练(出示幻灯片四)
1、下面哪对量是具有相反意义的?
(1)在知识竞赛中,加20分和扣10分。
(2)一座水库水量增加10000立方米和减少12000立方米。
(3)某汽车站开进汽车28辆和开出汽车24辆。
(4)长方形的周长是24厘米和面积是27平方厘米。
2、写出与下列各量具有相反意义的量:
(1)飞机上升200米
(2)铅球的质量低于标准质量2克
(3)木材公司购进木材2000立方米
3、判断下列各数哪些是正数,哪些是负数
+12,-3,19,+0.4,0,3.14,+,-,-0.01
五、应用迁移,拓展升华
(出示幻灯片五)
填空:-1,2,-3,4,-5,_____,_____,
_____,_____……
第81个数是_______,第20_个数是_______.
教师针对学生的回答进行点评,并适当鼓励。
下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”)
星期日一二三四五六
元+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来的相比多了还是少了?
(3)如果不用正负数的方法记账,你还可以怎样记帐?比较各种记帐方法的优劣。
教师参与学生的讨论,对学生的回答给予鼓励性的评价。
六、学习总结:
这节课你有哪些收获?有什么体会?
教师简要点评,同时对学生的总结给予适当的评价和鼓励,最后告诉学生,负数最早记载于中国的《九章算术》中,比国外早一千多年,借此向学生进行爱国主义思想教育。
1、课堂检测(包括基础题和能力提高题)
2、开放探究:
同学聚会,约定在中午12点开会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?一名学生按老师的指令表演,另一名学生在黑板上速记,其他同学参与,帮助本组的同学。
教师让多个学生自由发言
学生独立思考,举手发表个人见解,其他同学可以互相补充。
每组同学之间相互合作,交流,一同学说有关相反的两个量,由其他同学表示。
让学生抢答,尽量照顾不同层次的学生参与的积极性在教师的引导下学生仔细观察,小组讨论、交流,发表个人见解,学生踊跃发言,相互补充、完善,尝试归纳。
学生独立思考,举手回答,教师尽量选多名学生回答。
学生分组讨论,相互交流意见,选派代表回答。
同桌或小组学生讨论,合作探究,对于第(3)问同学们可以各抒已见。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
通过活动,激发学生参与课堂教学的热情,使学生进入问题情境,让其感受到引入数学符号的必要性,引入新课。
培养学生敢于发表自己见解的精神,激发学生学习的兴趣。
进一步加深巩固具有相反意义的量的意义,同时培养学生的语言表达能力
巩固具有相反意义的量的表示方法,培养学生合作交流意识。
在练习中进一步巩固具有相反意义的量的表示方法。
在这一活动中有助于培养学生的观察能力,合作探究意识和语言表达能力,可调动不同层次学生的积极性。
巩固所学的知识,让多名学生回答,可调动不同层次的学生的积极性。
通过学生的讨论交流,培养学生合作意识及总结归纳能力。
通过这一实际问题,有助于提高学生运用所学的知识解决实际问题的能力,同时体现了运用正、负数表示的优越性。
学生尝试小结,自由发表学习心得,能培养学生的语言表达能力和归纳概括能力,同时向学生进行爱国主义思想教育。
考查学生对知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力。
附板书设计:
2.1正数和负数(一)
正数
像+1.8,+14200,+30,
+10%等在已学过的数
(0除外)的前面添上
“+”的数叫正数。
教学反思:
本节课采取启发式教学法和情感教学,创设问题情境,引导学生主动思考,总结和归纳,取得了较好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养,重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师,但在引入正负数概念时,学生由得到的具体数总结归纳时,仍然感到有些难度,教师有些包办代替,还是应该多举些实例,完全由学生得出更好。
2.1正数和负数(二)
教学目标:
知识与技能:理解有理数的意义;能把给出的有理数按要求分类;了解数0在有理数分类中的作用;理解相反数的意义;给一个数,能求出它的相反数。
过程与方法:通过本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力。
情感态度与价值观:通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。
教学重点:有理数的分类,理解相反数的意义
教学难点:掌握有理数的两种分类
教材分析:正确进行有理数的分类,理解相反数的意义,可为今后绝对值的学习,有理数大小比较及有理数的运算打下基础。同时可培养学生对事物进行分类讨论的思想,因此成为本节课的重点。两种分类是按不同标准划分的,学生很容易混淆,因此成为本节课的难点,本节课是继负数引入后的一节课,它把以前所学的数作了梳理和归纳,使得知识系统化,能培养学生分类讨论的思想。同时相反数的意义可为以后的学习作准备,本节课旨在通过学生观察、思考、探索、总结知识,培养学生的讨论、交流、总结、归纳能力和合作探究意识,树立分类讨论思想。
教学方法:情境教学法、生生互动法
课时安排:一课时
教具:投影仪(电脑)
环节教师活动学生活动设计意图
合作探究一
课堂反馈
现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数。大家讨论一下,到目前为止,你已经认识了哪些类型的数。
教师板书学生说出的数。然后引出新课并板书课题:2.1正数和负数(二)
议一议:
你能把这些数分类吗?
教师对学生的回答给予鼓励性的评价,同时指出:我们把所有的这些数统称为有理数。
一、讨论与交流,归纳有理数的分类:
1、试一试:你能对以上各种类型的数作出一张分类表吗?
教师启发诱导,参与讨论,最后师生共同完成。
教师板书:
2、做一做:
以上按整数和分数来分,那么可不可以按性质(正数、负数)来分呢?
教师对学生的回答进行适当点评和鼓励,加以引导。
板书:
教师强调两种分类的区别:
第一种分类是先把有理数按“整”和“分”来分类,再把每类按“正”和“负”来分类。
第二种分类是把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类。
二、观察与思考:了解相反数:
(出示幻灯片一)
下列各组数有哪些相同点和不同点?请说说你的想法,并和同学进行交流。
(1)4,-4(2)3,-3(3)2.5,-2.5
教师针对学生的回答,给予鼓励性评价,并根据学生的发言讲解出相反数的概念(板书:只有符号不同的两个数,称其中一个数是另一个数的相反数,0的相反数规定为0)
(出示幻灯片二)
例2:(1)分别写出8和-12的相反数
(2)指出-11.2和各是什么数的相反数。
教师尽量照顾不同层次的学生参与的积极性,对学生的回答给予鼓励,利用幻灯片出示答案。
三、巩固基础,加强训练
(出示幻灯片三)
1、把下列各数填入相应的集合内:
0.618,+15,,-0.3,,-12
正整数负整数正数集合负数集合
集合集合
2下列说法中,正确的个数为()
①0是最小的正整数②0是最小的有理数
③0不是负数
④0既是非正数,也是非负数
A、1个B、2个C、3个D、4个
3、填空:
(1)4.5的相反数是.
(2)-2的相反数是.
(3)的相反数是2
(4)的相反数是0
教师针对学生的答题情况给予适当评价和鼓励。
四、应用迁移,巩固提高
(出示幻灯片四)
1、如图是一个正方体纸盒的展开图,请把-11,12,11,-2,-12,2分别填入六个正方形,使得按虚线折成的正方体后,对面上的两个数互为相反数。
2、请你在下面的圈中填上适合的数,使得圈内的数依次为整数集、有理数集、正数集、分数集、负数集。
教师参与学生的讨论,启发、鼓励学生的动手尝试,对学生的答案给予鼓励性评价。在讲台上展示不同学生的答案。
五、学习总结:
提问:今天你获得了哪些知识?
教师参与互动,并给予鼓励性评价
教师简要点评:今天我们学习了有理数的意义和两种分类的方法及相反数的概念,我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法。
1、课堂检测
2、生活中,我们也常常对事物进行分类,请你举例说明。
学生同桌讨论、交流,自由发言
学生踊跃发言,相互补充
学生观察思考,分组讨论,尝试归纳
学生进一步讨论、交流、总结、归纳
学生观察思考,小组讨论,交流发现和概括出“相反数”
学生抢答
1、3题学生抢答,尽量照顾不同层次的学生参与的积极性;
2题学生讨论、交流选代表回答。
1题学生可动手实际操作
同桌或小组讨论合作研究完成
学生相互交流自己的收获和体会
综合考查
学以致用
对所学过的数作了梳理和回顾,自由发言激发了学生学习的热情和求知欲。
为有理数的分类作准备
培养了学生观察、思考、总结、归纳的能力,同时培养学生对数分类讨论的观点
通过再分类培养学生树立对立与统一的思考方法,对学生进行辩证唯物主义教育。
培养学生观察能力,合作探究意识,总结、归纳的能力和语言表达能力。
在练习中进一步巩固相反数的概念。
巩固所说的知识
通过练习培养学生的动手操作能力和团结协作的精神,有助于提高学生运用所学知识解决实际问题的能力。
锻炼学生的语言表达能力和归纳概括能力
考查学生对本节知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力
附板书设计:
2.1正数和负数(二)
1、有理数的两种分类:
(1)(2)
教学反思:
本节课通过情境教学导入新课,并且在教学过程中,教师扮演的是组织者、引导者、合作者的角色,学生成为了学习的主人,主动去观察、讨论、交流、总结、归纳,体现了新课程理念,但在整个的教学过程中还缺乏与实际生活的联系,教师在此方面还须努力挖掘这方面的素材,让学生真正体会到数学知识来源于生活,又反作用于生活。
人教版七年级上册数学教案精选篇5
教学目标:
1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。
2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。
3、培养学生获取信息,并进行分析的意识和能力。
4、进行德育渗透,培养学生科学精神和民族自豪感。
教学重点:
了解负数的意义和负数在生活中的应用。
教学难点:
理解负数的意义。
教学用具:
电脑课件、实物投影仪、温度计。
教学过程:
一、创设情境,导入新知。
同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。(边说边板书:数数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。能开始吗?
1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。
2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。
3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。
二、探讨交流,感知新知。
(一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。
1、展示同学们的记录单(随机进行)
根据同学们的记录情况,启发同学进行分析,相互之间交流看法。
谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。)
足球比赛
转学情况
账目结算
上半场2四年级7三月份900下半场
五年级3四月份100
刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)
看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。(渗透对应的数学思想)表示相反意义的两个量。这张记录单,只把数据记了下来,没有说明情况。请看这张记录单,你觉得怎样?(请学生们交流看法)
足球比赛
转学情况
账目结算
上半场进2个四年级进7人三月份900下半场输2个五年级出3人四月份100
这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)
还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。)
2、小结:你用的符号意思你明白,他用的符号意思他明白,那我们要想让大家都明白,就应该用共同的符号。(视课堂学习的情况而定,如果有用“+”、“-”就来展示一下,让同学们了解。)
3、统一记录的方法和形式看,咱们同学还有用这种方法记录的:
足球比赛
转学情况
账目结算
上半场+2四年级+7三月份+900下半场-2五年级-3四月份-100
谁说说用这种方法记录好在哪儿?(能准确表达老师要说的意思,简单)
小结:这种记录方法中所用的这两个符号“+”、“-”是数学符号,(教师边说边板书:+、-)。数学符号是数学的语言,是帮助大家进行交流的。以前我们见过它,想想在哪儿见得最多?现在它们可有新的名字啦,我们管它“+”叫正号(师边说边板书:正号),跟我读:正号。它“-”叫负号(板书:负号)读:负号,人们在数学中就用这种符号来区别意义相反的量。
(二)认识正数和负数,读、写正、负数。
1、认、读正、负数。
像记录单中这个数+2,我们就读正2(板书:+2)跟我读:正2;它“-2”,读作:负2(板书:-2)跟我读:负2。
用刚才的方法,谁能读出后面的4个数?(指名读,随着生读师板书:+7,-3,+900,-100)
小结:刚才我们用正号和负号能清楚地记录数学信息,从中我们也认识了正数和负数(师板书:正、负)。
练一练:谁能说出几个正数和负数,说的完吗?正、负数是无穷多的。(渗透集合思想)用一个符号表示……(师同时板书)
课件出示:-100,+68,-1.5,+,-,36
请同学们开火车读,其他同学判断。
讨论36是什么数,介绍为了简便起见,正号可以省略不写。
猜猜看,36是正数还是负数?
告诉你,像这样的数是正数,为了简便起见,正号可以省略。同学们想一想,负号可不可以省略,为什么?(区分不开)
在学生充分发表自己的意见后,教师归纳:为了正确的区分正数和负数,负号不能省略,正号可以省略。我们已经初步的认识了正数和负数,下面老师考考大家,行吗?
2、写数,认识“0”
课件出示练习
做完后同学交流结果。
谁想把你做的结果跟大家交流一下。(学生说,教师同时用课件演示。)
重点讨论“0”的问题,让学生初步感知大于0的数是正数,小于0的数是负数,0既不是正数,也不是负数。
3、介绍负数的历史
通过以上的学习,大家已经认识了负数这个新朋友,其实对负数的认识,我们祖国有着悠久的历史,古代人在很早以前就想出了用不同方法记录正数和负数,大家想知道吗?请看大屏幕。
⑴、出示课件,请同学读上面的信息,其他同学思考:你从中知道了什么?
听了他们的介绍,你们想说些什么吗?
⑵、学生谈感受
使学生了解我国在很早以前就有使用负数的历史,从而培养学生的科学精神和民族自豪感。(进行德育渗透)
(三)寻找生活中的负数,进一步理解负数的意义。
1、从天气预报入手,感知负数的意义。
负数在我们生活中有很多的应用。请看大屏幕,这是20_年11月3日北京市气温分布图。
出示课件:找同学读一读。
谁能读出上面的气温?
区别-1℃和1℃所表示的意义,感知0是正、负数的分界点。
这个气温分布图上,有这样两个温度:-1℃和1℃,谁能说说它们有什么不同?为什么?(-1℃是零下,1℃是零上)(-1℃比1℃要冷)
小结:在通常情况下,把水结冰的温度定为0℃,把水沸腾时的温度定为100℃,100℃在0℃以上,可用正数表示,0℃以下的温度可用负数表示。由此可见,0℃很关键。
2、在温度计上找温度,体会水银柱越往上升温度越高,水银柱下降温度降低,0℃以上为正数,0℃以下为负数。
把你的温度计准备好,请你在温度计上表示出10摄氏度。(展示同学们的温度计,有两种可能,一种是10℃,另一种是-10℃)从温度计中更能看出0℃的重要性了。
(四)用直线上的点表示正、负数,并总结规律。
正数和负数还可以用直线上的点表示。(边说边演示)请看大屏幕,直线上有无数个点,我们选择其中的一个点为0点,每小格代表单位1,如果我要写正数,在0的哪边写?还可以写好些,正数都在0的右边,那0的左边就是(负数了)。
负数正数
越来越大
-3-2-10123
越来越小
请你观察这个图,从左向右看,你发现了什么?(从左向右数越来越大)还可以从哪边看?你又发现了什么规律?(从右向左数越来越小)从这个图中你能看出0是什么数吗?(板书:0)(0既不是正数,也不是负数)0和正、负数之间有怎样的关系?(0小于所有的正数,大于所有的负数)可以用这个符号“<”把它们连接起来吗?(同时板书:“<”)
三、走进生活,巩固新知。
负数在我们的生活中随处可见。
1、电梯中的负数(出示课件)
下面请同学看大屏幕,叔叔应该按哪个键?阿姨应该按哪个键?
2、存折上的负数。
3、方向问题(出示课件)
我们继续往下看,默读题目,谁读懂了,谁能填空?
4、课本P73例4(出示课件)
请看这幅图,我们以海平面为分界线,图中高于海平面有两点,低于海平面有哪几点?用正、负数读出图中的数据。
5、刘翔跨栏的画面(出示课件)
认识他吗?请你默读信息,思考当时赛场风速每秒-0.4米是什么意思?谁能解释一下?
四、归纳总结,质疑问难。
可见,正、负数在我们的生活中应用得很广泛,以后大家千万要留心身边的生活,在我们的日常生活中,处处都有要学的数学知识。
时间过得真快,马上就要下课了,你们过得高兴吗?说说有什么收获?
看着你们举起的手,大家都有所收获。
哪儿不明白?
我们不仅学会了知识,还学会了思考问题。下节课我们一起讨论解决大家提出的问题。
五、留心生活,完成作业。
作业:
1、完成自主丛书P431、2、3题;
2、课后思考:还有哪些事物可以用正、负数来表示。
板书:
负数<0<正数
-2+2+正号
-3+7-负号
-100+900