【任务分析】
教
学
目
标知识
技能1.熟练掌握分式的概念,会进行分式的混合运算;
2.会解分式方程并能应用到实际问题中去,发展应用意识,提高运算能力.
过程
方法1.经历复习分式概念、计算、“建模”等应用过程,探索数量关系和变化规律,发展
学生应用数学的意识与能力.
2.经历练习的过程,探索解题方法,学会从解题中归纳规律.
情感
态度1.培养学生主动参与意识,发展思想的条理性和灵活性;
2.培养学生的合作意识,鼓励学生多进行合作交流,提高自己分析问题的能力.
重点分式的混合运算、分式方程的解法和分式方程的应用.
难点1.异分母的分式的通分;2.分式方程的应用.
【环节安排】
环节教 学 问 题 设 计教学活动设计
知
识
回
顾1.在代数式 、 、 、 中,分式共有( )
A. 1个 B. 2个 C. 3个 D. 4个
2.如果把分式 中的x和y都扩大10倍,那么分式的值( )
A. 扩大10倍 B. 缩小10倍 C. 扩大2倍 D. 不变
3.下列分式中,是最简分式的是( )
A. B. C. D.
4.用科学记数法表示:―0.000000108=__________________(保留2个有效数字).用科学记数法表示数:0.000000345=____________.
5.当x为何值时,下列分式有意义?
(1) (2)
6.当m为何值时,分式 的值为零?
7.计算:
(1) (2)
8.解方程:
9.某人骑摩托车从甲地出发,去90千米外的工地执行任务,出发1小时后,发现按原来的速度前进,就要迟40分钟,于是立即将车速增加一倍,于是又提前20分钟到达,求摩托车原来的速度.学生独立完成
教师巡视,了解学生掌握的情况,指导学习成绩较差的学生.
指五名学生板演5、6、7、8、9题.
完成练习后,首先在小组内部进行交流,由组长协调小组成员相互帮助,共同修正错误答案,形成本小组的共同答案.并总结解决题目所用到的知识点
教师在听取答案后,给予各小组准确的评价,要了解学生是否把各题的知识点展示出来了.
综
合
应
用1.解方程:
2.有一道题:“先化简,再求值: 其中x=-3 ,”小玲做题时把” x= “错抄成x= ,但她的计算结果也是正确的,请你解释这是怎么回事. www.
3.在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问:
(1)甲、乙两个工程队单独完成该工程各需多少天?
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用是多少万元?教师出示题目,把三道题目的板练任务分到三个小组,小组长根据试题的难易程度适当安排本小组的成员到黑板上练习.
教师重点讲解第3题:当设甲工程队单独完成该工程需x天时,如何用x表示出乙工程队单独完成该工程需多少天.
矫
正
补
偿1.计算: =_______.
2.x=______时,分式 的值等于
3.计算:(1) ;(2)
4.解方程:(1) ;(2) .
5.应用题:
甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑车的速度各是多少.教师根据课堂实际情况灵活安排.
完成后,由做题的小组进行讲解,其他小组待其讲完后,可进行补充讲解.
教师最后进行点评.
完
善
整
合 分式有意义的条件
概念
分式值为0的条件 异分母 通分
加减
同分母
分 分式的基本性质 分式的运算
式
乘除 约分 最简分
去分母
解法 整式方程 验根
分式方程