欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 九年级上册数学教案

九年级上册数学教案

网友 分享 时间: 加入收藏 我要投稿 点赞

九年级上册数学教案优秀5篇

数学是一扇开启智慧之门的钥匙,它为我们提供了思考和解决问题的工具,让我们更深入地理解世界。这里给大家分享一些关于九年级上册数学教案,供大家参考学习。

九年级上册数学教案

九年级上册数学教案(精选篇1)

教学目标:

1. 通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2. 能在方格纸上将简单图形旋转90°。

教学重难点:

能在方格纸上将简单图形旋转90°。

活动过程:

活动一:创设情景,解决问题

(1)在生活中,有各种美丽的图案,但其中有很多图案是由简单的图形经过平移或旋转获得。本活动所介绍的是简单图形经过旋转形成复杂图案的过程。

(2)活动的导入阶段,可以出示一组图案让学生欣赏。然后将这些图案按一定的形状进行分解,并取出其中的一小部分放在方格子上进行旋转,逐步展示简单图形经过旋转后形成复杂图案的过程。当然,每一次的旋转,都要学生说说是什么图形绕着哪一点旋转的?旋转的角度是多少?学生也可以用学具自己操作,以便学生体验旋转的过程。

活动二:实践练习

在学生独立完成的基础上,进行全班的交流,老师进行指导。

第1题

本题的练习主要认识图形的旋转是围绕哪个点旋转的问题,所以,这个活动可以先让学生独立尝试,然后再讨论旋转的中心点的问题。活动时,每个学生都可以准备一些白纸和三角形。为让学生体会到旋转前后图形的变化,先可以请学生沿着三角形的边把手上的三角形描绘下来,接着以这个三角形的一个顶点为中心进行旋转(旋转的角度可以是任意的),最后说一说这个三角形是围绕哪一点旋转的。

第2题

同样,本题也可以先请学生根据要求进行旋转操作,并把每次旋转过程中所得图形描绘下来。接着讨论从图形1到图形2,从图形2到图形4等旋转的角度。

在练习时,可以先让学生用三角形在方格子上按要求进行操作,学生比较熟练后,再请他们按要求画出旋转的图形。

第3题

同样,本题的练习也最好请学生自己摆一摆,在摆的过程中,让学生积累一些经验,然后再涂颜色。

九年级上册数学教案(精选篇2)

教学内容:课本第31页例3及做一做、练习七第7题。

教材分析:旋转也是人教版二年级数学下册第三单元的内容,平移与旋转这两种现象是生活中比较常见的几何现象。课程标准不要求对这两个概念进行定义,更不需要学生去背诵结论性语句,只要求学生紧密联系生活实际去感知这些现象。二年级学生在生活中见到很多平移和旋转的运动现象,在他们的头脑中已有比较感性的平移和旋转意识,受生活经验的限制,对于好多现象的判断还有些模糊,更无法想象,不能透过现象用数学的眼光来抓住运动方式的本质。

教学目标:

1.知识与技能:借助日常生活中的旋转现象,通过观察、操作,使学生直观认识旋转图形,培养同学们的空间想象能力,发挥学生的空间观念。

2.过程与方法:借助生活中的旋转现象和学生的操作活动,体会旋转的特征。例如:通过制作陀螺并使之转动,感受旋转。

3.情感态度和价值观:通过对生活事物钟表,旋转门等,使学生感受相关知识在生活中的运用,激发学生的学习兴趣。

教学重点、难点:认识并辨别旋转图形,并能判断旋转点或线以及旋转的方向。

教学过程:

一、故事导入,引入新课

老师:上一节课,我们学习了有关平移的内容,接下来我们就来复习一下关于平移的知识。

老师:谁能说说生活中常见的的平移现象吗?

同学:观光电梯,推拉窗

老师:同学们回答得都很好,看来大家对平移的内容掌握的都很好。那么,现在请大家看看这几幅图是什么现象呢?

同学:给出自己的答案。(不是平移,因为方向发生了改变。)

老师:既然这些图片不属于平移,那应该叫什么呢?下面我们就共同研究一下这种特别的运动方式。(PPT翻页)请大家仔细观察这些的娱乐项目,仔细看看它们有什么共同之处?待会儿告诉我你发现了什么?

二、探求新知,感受旋转

同学:他们都是围绕中心运动,都是旋转现象。

老师:同学们观察得真仔细,我们刚刚看到的摩天轮、太空飞船和飞机的螺旋桨都是旋转现象。(物体的每个部分都是绕同一个点(或者同一条直线)转动就是旋转现象。板书:认识旋转现象)大家现在知道齿轮是什么运动了吧,大家说齿轮是什么运动?

同学:旋转

老师:那么,同学们还见过哪些旋转图形或旋转现象吗?同桌之间互相讨论一下。

老师:讨论好了吗?我来听听大家是怎么想的?

同学:自由发言。

(播放旋转现象的图片请同学做出回答)

老师:同学们观察得真仔细。老师这儿也有几张图片,大家看一下判断一下是不是旋转。(播放)

老师:大家翻开课本第34页,做一下练习七的第七题。请大家判断一下哪些是平移,哪些是旋转。

三、知识应用,巩固知识

老师:下面我们来看一下生活中常见的旋转想象。

老师:大家知道钟表是怎么转动的吗?(讲解钟表的转动方向和规律,钟表的指针是顺时针转动的,时针从数字12走到数字1时,要一小时,分针从数字12走到数字1时要5分钟,秒针从数字12走到数字1要5秒。)下面大家做一下练习七的第8题。

播放PPT,你可以利用一片花瓣旋转制作出美丽的花吗? 请学生作答后老师展示图片。

四、回顾总结

老师:同学们,今天这节课你有什么收获?

(学生交流学习感受)

老师:通过这节课的学习,我们认识了轴对称旋转图形(现象)。物体的每个部分都是绕着同一个点(或者同一条线)转动叫旋转图形(现象)

(播放多媒体中的课后作业,课程内容结束。)

五、板书设计:

旋转

物体的每个部分都是绕着同一个点(或者同一条线)转动。

九年级上册数学教案(精选篇3)

本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.

在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[

等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.

2.4二次函数y=ax2+bx+c的图象(一)

教学目标

(一)教学知识点[

1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.

2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

(二)能力训练要求

1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.

2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.

(三)情感与价值观要求

1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.

2.让学生学会与人合作,并能与他人交流思维的过程和结果.

教学重点

1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.

2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

教学难点

能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

教学方法

探索比较总结法.

教具准备

投影片四张

第一张:(记作2.4.1 A)

第二张:(记作2.4.1 B)

第三张:(记作2.4.1 C)

第四张:(记作2.4.1 D)

教学过程

Ⅰ.创设问题情境、引入新课

[师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.

Ⅱ.新课讲解

一、比较函数y=3x2与y=3(X-1)2的图象的性质.

投影片:(2.4 A)

(1)完成下表,并比较3x2和3(x-1)2的值,

它们之间有什么关系?

X -3 -2 -1 0 1 2 3 4

3x2

3(x-1)2

(2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?

(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?

[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.

[生](1)第二行从左到右依次填:27.12,3,0,3, 12,27,48;第三行从左到右依次填48,27,12,3,0,3, 12,27.

(2)用描点法作出y=3(x-1)2的图象,如上图.

(3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).

(4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x1时,y=3(x-1)2的值随x值的增大而减小.

[师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?

[生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.

[师]能像上节课那样比较它们图象的性质吗?

[生]相同点:

a.图象都中抛物线,且形状相同,开口方向相同.

b. 都是轴对称图形.

c.都有最小值,最小值都为0.

d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.

不同点:

a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.

b. 它们的位置不问.

c. 它们的顶点坐标不同. y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),

联系:

把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.

二、做一做

投影片:(2.4.1 B)

在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.

[生]图象如下

它们的图象的性质比较如下:

相同点:

a.图象都是抛物线,且形状相同,开口方向相同.

b. 都足轴对称图形,对称轴都为x=1.

c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.

不同点:

a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.

b. 它们的位置不同.

联系:

把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.

三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.

[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?

[生]可以.

二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

[师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?

[生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.

[师]你能系统总结一下吗?

[生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

[师]下面我们就一般形式来进行总结.

投影片:(2.4.1 C)

一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.

(1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c0时,向上移动,当c0时,向下移动.

(2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动.

(3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.

因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.

下面大家经过讨论之后,填写下表:

y=a(x-h)2+k 开口方向 对称轴 顶点坐标

a0

a0

四、议一议

投影片:(2,4.1 D)

(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?

[师]在不画图象的情况下,你能回答上面的问题吗?

[生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.

(2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).

(3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,y的值随x值的增大而减小;当x-1时,y的值随x值的增大而增大.

Ⅲ.课堂练习

随堂练习

Ⅳ.课时小结

本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.

Ⅴ.课后作业

习题2.4

Ⅵ.活动与探究

二次函数y= (x+2)2-1与y= (x-1)2+2的图象是由函数y= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?

解:y= (x+2)2-1的图象是由y= x2的图象向左平移2个单位,再向下平移1个单位得到的,y= (x-1)2+2的图象是由y= x2的图象向右平移1个单位,再向上平移2个单位得到的.

y= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y= (x-1)2+2的图象.

y= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y= (x+2)2-1的图象.

板书设计

4.2.1 二次函数y=ax2+bx+c的图象(一) 一、1. 比较函数y=3x2与y=3(x-1)2的

图象和性质(投影片2.4.1 A)

2.做一做(投影片2.4.1 B)

3.总结函数y=3x2,y=3(x-1)2y= 3(x-1)2+2的图象之间的关系(投影片2.4.1 C)

4.议一议(投影片2.4.1 D)

二、课堂练习

1.随堂练习

2.补充练习

三、课时小结

四、课后作业

备课资料

参考练习

在同一直角坐标系内作出函数y=- x2,y=- x2-1,y=- (x+1)2-1的图象,并讨论它们的性质与位置关系.

解:图象略

它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).

y=- x2的图象向下移动1个单位得到y=- x2-1 的图象;y=- x2的图象向左移动1个单位,向下移动1个单位,得到y=- (x+1)2-1的图象.

九年级上册数学教案(精选篇4)

一、教学目标

1.知识与技能

(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;

2.过程与方法

通过猜想、探讨构建一元二次方程模型.

3.情感、态度与价值观

(1)通过自主、探究性学习,使学生养成良好的思维习惯;

(2)通过对方程解的合理性解释,培养学习实事求是的作风.

二、教学重点难点

1.重点

找出问题中的数量关系;

2.难点

找等量关系并列出相应方程.

三、教材分析

本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型.

四、教学过程与互动设计

(一)温故知新

1.请同学们回忆并回答解一元一次方程应用题的一般步骤:

第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;

第二步:找出能够表示应用题全部含义的相等关系;

第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;

第四步:解这个方程,求出未知数的值;

第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称.)

2.解一元二次方程的应用题的步骤与解一元一次方程应用题的.步骤一样.

我们先来解一些具体的题目,然后总结一些规律或应注意事项.

(二)创设情景,导入新课

1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.

若梯子的顶端下滑1米,那么

(1)猜一猜,底端也将滑动1米吗?

(2)列出底端滑动距离所满足的方程.

【答案】①底端将滑动1米多

②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际.

2.【探究活动】

1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?

(1)学生讨论:怎样计算月利润增长百分率?

【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润

例8 某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率。

分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍。

解:设平均降价百分率为x,根据题意,得

56(1-x)2=31.5

解这个方程,得

x 1 = 1.75,x2=0.25

因为降价的百分率不可能大于1,所以x1 = 1.75不符合题意,符合题意要求的是x=0.25=25%

答每次降价百分率为25%.

【跟踪练习】

某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%).

【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性。

(三)应用迁移,巩固提高

1.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( )

(A)200(1+a%)2=148 (B)200(1-a%)2=148

(C)200(1-2a%)=148 (D)200(1-a2%)=148

2.为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?

(四)达标测试

1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()

A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800

2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程,一元二次方程的解法

3.某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?

4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)

5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数

五、课堂小结

九年级上册数学教案(精选篇5)

教学目标

一、 教学知识点

1、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2、 理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.

3、 理解一元二次方程的根就是二次函数与y =h 交点的横坐标.

二、 能力训练要求

1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探 索能力和创新精神

2、通过观察二次函数与x 轴交 点的个数,讨论 一元二次方程的根的情况,进一步培养学生的数形结合思想.

3、通过学生共同观察和讨论,培养合作交流意识.

三、 情感与价值观要求

1、 经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2、 具有初步的创新精神和实践能力.

教学重点

1.体会方程与函数之间的联系.

2.理解何 时方程有两个不等的实根、两个相等的实根和没有实根.

3.理解一元二次方程的根就是二次函数与y =h 交点的横坐标.

教学难点

1、探索方程与函数之间的联系的过程.

2、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系.

教学方法

讨论探索法

教学过程:

1、 设问题情境,引入新课

我们已学过一元一次方程kx+b=0 (k0)和一次函数y =kx+b (k0)的关系,你还记得吗?

它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转化成了一元一次方 程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.

现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.

2、 新课讲解

例题讲解

我们已经知道,竖直上抛物体的高度h (m )与运动时间t (s )的关系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是抛出时的高度,v 0(m/s )是抛出时的速度.一个小球从地面被以40m/s 速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么

(1)h 与t 的关系式是什么?

(2)小球经过多少秒后落地?你有几种求解方法?

小组交流,然后发表自己的看法.

学生交流:(1)h 与t 的关系式是h =-5 t 2+v 0t +h 0,其中的v 0为40m/s,小球从地面抛起,所以h 0=0.把v 0,h 0带入上式即可求出h 与t 的关系式h =-5t 2+40t

(2)小球落地时h为0 ,所以只要令 h =-5t 2+v 0t +h 0中的h=0求出t即可.也就是

-5t 2+40t=0

t 2-8t=0

t(t- 8)=0

t=0或t=8

t=0时是小球没抛时的时间,t=8是小球落地时的时间,也可以观察图像,从图像上可看到t =8时小球落地.

议一议

二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像如下图所示

(1)每个图像与x 轴有几个交点?

(2)一元二次方程x2+2x=0 , x2-2x+1=0有几个根?解方程验证一下, 一元二次方程x2-2x +2=0有根吗?

(3)二次函数的图像y=ax2+bx+c 与x 轴交点的坐标与一元二次方程ax2+bx+c=0 的根有什么关系?

学生讨论后,解答如 下:

(1)二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像与x 轴分别有两个交点、一个交点,没有交点.

(2)一元二次方程x 2+2x=0有两个根0,-2 ;x2-2x+1=0有两个相等的实数根1或一个根1 ;方程x2-2x +2=0没有实数根

(3)从图像和讨论知,二次函数y=x2+2x与x 轴有两个交点(0,0),(-2,0) ,方程x2+2x=0有两个根0,-2;

二次函数y=x2-2x+1的图像与x 轴有一个交点(1,0),方程 x2-2x+1=0 有两个相等的实数根1或一个根1

二次函数y=x2-2x +2 的图像与x 轴没有交点, 方程x2-2x +2=0没有实数根

由此可知 ,二次函数y=ax2+bx+c 的图像与x 轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.

小结:

二次函数y=ax2+bx+c 的图像与x 轴交点有三种情况:有两个交点、一个交点、没有焦点.当二次函数y=ax2+bx+c 的图像与x 轴有交点时 ,交点的横坐标就是当y =0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.

基础练习

1、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标.

(1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+4

2、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若抛物线与x轴有两个交点,则a的范围是

3、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a的范围是 .

4、已知抛物线y=x2+px+q与x 轴的两个交点为(-2,0),(3,0),则p= ,q= .

5. 已知抛物线 y=-2(x+1)2+8 ①求抛物线与y轴的交点坐标;②求抛物线与x轴的两个交点间的距离.

6、抛物线y=a x2+bx+c(a0)的图象全部在轴下方的条件是( )

(A) a0 b2-4ac0(B)a0 b2-4ac0

(B) (C)a0 b2- 4ac0 (D)a0 b2-4ac0

想一想

在本节一开始的小球上抛问题中,何时小球离地面的高度是60 m?你是怎样知道的?

学生交流:在式子h =-5t 2+v 0t +h 0中v 0为40m/s, h 0=0,h=60 m,代入上式得

-5t 2+40t=60

t 28t+12=0

t=2或t=6

因此当小球离开地面2秒和6秒时,高度是6 0 m.

课堂练习 72页

小结 :本节课学习了如下内容:

1、若一元二 次方程ax2+bx+c=0的两个根是x1、x2, 则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0 ), B( x2,0 )

2、一元二次方程ax2+bx+c=0与二次三项式ax2+bx+c及二次函数y=ax2+bx+c这三个二次之间互相转化的关系.体现了数形结合的思想3、二次函数y=ax2+bx+c何时为一元二次方程?

221381
领取福利

微信扫码领取福利

九年级上册数学教案

微信扫码分享