欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 人教版八年级上册数学教案

人教版八年级上册数学教案

网友 分享 时间: 加入收藏 我要投稿 点赞

人教版八年级上册数学教案【精选5篇】

数论是数学的一个分支,研究整数的性质和关系,包括素数、因子分解和数的性质。这里给大家分享一些关于人教版八年级上册数学教案,供大家参考学习。

人教版八年级上册数学教案

人教版八年级上册数学教案篇1

教学目标:

1. 通过生活中的事例,使学生初步体会什么是轴对称图形。

2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。

3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意识和实践能力。

教学重点:

1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。

2. 能正确判断轴对称图形。

教学难点:

画出轴对称图形。

教学准备:

课件剪刀 彩色卡纸 平行四边形纸

一、 情境导入

1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。

课件出示不对称“脸图”问:“这张脸可爱吗?”

生:不可爱!

课件演示脸图由不对称变为对称,问:现在呢?

生:可爱!

师:看来,人人都喜欢美丽的东西。今天老师给大家带来了一些美丽的图片,请欣赏。

2.图片欣赏 (课件出示对称图形图片)

看完图片后师问:这些图片中的图形有什么特点?(指名回答)

学生可能会说,它们两边完全一样。

教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)

二、 探究新知

1.认识轴对称图形

师:在我们的生活中,还有很多事物都是对称的。

看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)

生:想!

师:老师和你们来一场比赛,看谁剪的又快又好,开始!

师生同时动手剪,完成后教师把自己剪的贴在黑板上。

请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。(指导学生演示方法)

问演示学生:你怎么让大家知道你剪的小松树是对称的呢?

生:我把它对折(生边说边演示)(师板书:对折)

师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?

生:左右两边完全重合(师板书:完全重合)

师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。(出示概念,补充课题:轴对称

图形)

生齐读概念

2.认识对称轴

师:把你们的对称图形打开,观察图形中间有什么?

生:有一条直直的折痕。

师:这条折痕所在的这条直线叫做对称轴(板书:对称轴)

出示感念,生齐读。

师演示并带领学生画对称轴(强调用虚线)

我们认识了新朋友轴对称图形,现在这位新朋友在和我们玩捉迷藏呢!

三、 实际应用

1.看一看,说一说,下面哪些图形是轴对称图形?(课件出示课本13页图)

生应用所学知识判断,教师点评。

师:这位新朋友留给大家的印象非常深刻,我们很容易就发现了它,你们能把这些对称图形的对称轴画出来吗?

生动手画对称轴,师巡视指导,完成后订正。

师:轴对称的图形不单单生活中有,在我们天天接触的数字、汉字、字母中也同样存在,看,这儿还有轴对称图形吗?

2.找出下列图形中的轴对称图形(课件出示课本14页第1题)

生找出轴对称图形,并说说每个图形的对称轴在哪儿。

师:聪明的同学们能找轴对称图形,聪明的你们会画轴对称图形吗?

3.出示课本14页第3题

师用第一个图演示讲解画轴对称图形的要点:一看对称轴;二找关键点;三定对应点;四画对称图。

生在剩下的两个图形中选择一个动手画,完成后展示成果,全班点评。 师:同学们既能找,也能画,那肯定也能判断了。请看(课件出示)

4.下面哪些图形中的红线是对称轴?

师:看来同学们已经知道了很多轴对称图形

(出示导课时的“脸图”可爱的笑脸也是轴对称图形,你们有没有发现我们的身边还有许多的轴对称事物呀?)

生找身边的轴对称事物。

四、全课小结

我们身边轴对称的事物还有很多,轴对称的图形是美丽的,漂亮的,请同学们谈谈通过这节课的学学习,你有什么收获?

生:畅谈收获。

师:你们想知道老师有什么收获吗?(想)

老师今天收获了一份愉快的心情!

板书设计:

完全

轴对称图形 对称轴 重合

人教版八年级上册数学教案篇2

课程内容

边边边判定定理

选用教材

人教版数学八年级上册

授课人

崔志伟

授课章节

第十二章第二节

学 时

1

教学重点

掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

教学难点

探索三角形全等的条件,以及运用边边边定理画一角等于已知角

教学方法

学生合作探究法、教师讲解结合谈话法等综合教学方法

教学手段

黑板板书教学

课 堂 教 学 设 计

阶段

教学内容

导入部分

采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

阶段

课堂教学设计

课程新授

教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。

接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

首先引导学生对三组对应关系相等进行分类。

预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。

接下来请同学说出已知三角形与所作三角形之间存在的'对应相等关系,预设学生可以很轻易说出。

由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。

学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

作业

作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

板书设计

采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

小结

本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

人教版八年级上册数学教案篇3

教学目标:

1、知识目标:

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等。

2、能力目标:

(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2) 通过观察几何图形,培养学生的识图能力。

3、情感目标:

(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:学会运用公理证明两个三角形全等。

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、公理的发现

(1)画图:(投影显示)

教师点拨,学生边学边画图。

(2)实验

让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作。

(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一。

应用格式:

强调:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质。

2、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的总结。

分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由图形可以得到几个条件?

解:(略)

(2)讲解例2

投影例2:

例2如图2,AE=CF,AD∥BC,AD=CB,

求证:

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书。教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论。(3)讲解例3(投影)

证明:(略)

学生分析思路,写出证明过程。

(投影展示学生的.作业,教师点评)

(4)讲解例4(投影)

证明:(略)

学生口述过程。投影展示证明过程。

教师强调证明线段相等的几种常见方法。

(5)讲解例5(投影)

证明:(略)

学生思考、分析、讨论,教师巡视,适当参与讨论。

师生共同讨论后,让学生口述证明思路。

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

3、课堂小结:

(1)判定三角形全等的方法:SAS

(2)公理应用的书写格式

(3)证明线段、角相等常见的方法有哪些?

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a书面作业P56#6、7

b上交作业P57B组1

思考题:

板书设计:

探究活动

人教版八年级上册数学教案篇4

一、素质教育目标

(一)知识教学点

1.使学生把握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力练习点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具预备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第一课时

七、教学步骤

复习引入

在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的.关系,并运用有关四边形的知识解决一些新问题.

引入新课

用投影仪打出课前画好的教材中p119的图.

师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

讲解新课

1.四边形的有关概念

结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形.

(2)要与三角形类比.

(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.

(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.

(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

2.四边形内角和定理

教师问:

(1)在图4-3中对角线ac把四边形abcd分成几个三角形?

(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?

(3)若在四边形abcd如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形.

我们知道,三角形内角和等于180°,那么四边形的内角和就等于:

①2×180°=360°如图4—6;

②4×180°-360°=360°如图4-7.

例1已知:如图4—8,直线于b、于c.

求证:(1) ; (2) 。

本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出.

总结、扩展

1.四边形的有关概念.

2.四边形对角线的作用.

3.四边形内角和定理.

八、布置作业

教材p128中1(1)、2、 3.

九、板书设计

四边形有关概念

四边形内角和

例1

十、随堂练习

教材p122中1、2、3.

人教版八年级上册数学教案篇5

教学目标

知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;

过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.

情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.

教学重点:多边形外角和定理的探索和应用.

教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.

教学准备:多媒体课件

教学过程

第一环节 创设情境,引入新课(5分钟,学生理解情境,思考问题)

问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?

(2)他每跑完一圈,身体转过的角度之和是多少?

(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?

第二环节 问题解决(10分钟,小组讨论,合作探究)

对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。

小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.

这样,∠1+∠2+∠3+∠4+∠5=360°

问题引申:

1.如果广场的形状是六边形那么还有类似的结论吗?

2.如果广场的形状是八边形呢?

第三环节 探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)

1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。

2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。

探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?

鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。

方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;

方法Ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。

结论:多边形的外角和等于360°

(1)还有什么方法可以推导出多边形外角和公式?

(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?

第四环节 巩固练习(10分钟,学生利用知识独立解决问题)

例1一个多边形的内角和等于它的外角和的3倍,它是几边形?

随堂练习

1.一个多边形的外角都等于60°,这个多边形是几边形?

2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?

挑战自我:

1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?

2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?

挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。

第五环节 课时小结(3分钟,学生加深记忆)

多边形的外角及外角和的定义;

多边形的外角和等于360°;

在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.

第六环节 布置作业:

习题4.11

A组(优等生)第1,2,3题

B组(中等生)1、2

C组(后三分之一生)1

221381
领取福利

微信扫码领取福利

人教版八年级上册数学教案

微信扫码分享