欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 线性规划

线性规划

网友 分享 时间: 加入收藏 我要投稿 点赞

线性规划

【考试要求】

1.了解二元一次不等式(组)表示的平面区域;了解与线性规划相关的基本概念

2. 了解线性规划问题的图象法,并能用线性规划的方法解决一些简单的实际问题。

【教学重点】

1. 二元一次不等式(组)表示的平面区域;

2.应用线性规划的方法解决一些简单的实际问题。

【教学难点】

线性规划在实际问题的应用

【高考展望】

1.       线性规划是教材的新增内容,高考中对这方面的知识涉及的还比较少,但今后将会成为新高考的热点之一;

2.       在高考中一般不会单独出现,往往都是隐含在其他数学内容的问题之中,就是说常结合其他数学内容考查,往往都是容易题

【知识整合】

1.  二元一次不等式(组)表示平面区域:一般地,二元一次不等式 在平面直角坐标系中表示直线 某一侧所有点组成的__________。我们把直线画成虚线以表示区域_________边界直线。当我们在坐标系中画不等式 所表示的平面区域时,此区域应___________边界直线,则把边界直线画成____________.

2.  由于对在直线 同一侧的所有点,把它的坐标 代入 ,所得到实数的符号都__________,所以只需在此直线的某一侧取一个特殊点 ,从 的_________即可判断 >0表示直线哪一侧的平面区域

3.  二元一次不等式组是一组对变量x,y的__________,这组约束条件都是关于x,y的一次不等式,所以又称为_____________;

4.  (a,b是实常数)是欲达到最大值或_________所涉及的变量x,y的解析式,叫做______________。由于 又是x,y的一次解析式,所以又叫做_________;

5.  求线性目标函数在_______下的最大值或____________的问题,统称为_________问题。满足线性约束条件的解 叫做_________,由所有可行解组成的集合叫做_________。分别使目标函数 取得____________和最小值的可行解叫做这个问题的___________.

【典型例题】

例1.(课本题)画出下列不等式(组)表示的平面区域,

1)           2)              3)
4)           5)           6)

例2.

1)画出 表示的区域,并求所有的正整数解

2)画出以a(3,-1)、b(-1,1)、c(1,3)为顶点的 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数 的最大值和最小值。

例3.1)已知 ,求 的取值范围

      2)已知函数 ,满足 求 的取值范围

例4(04苏 19)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损。某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资打算多少万元,才能使可能的盈利最大?

2页,当前第112
221381
领取福利

微信扫码领取福利

线性规划

微信扫码分享