欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 和圆有关的比例线段(精选9篇)

和圆有关的比例线段(精选9篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

和圆有关的比例线段(精选9篇)

和圆有关的比例线段 篇1

  教学目标:1、使学生理解相交弦定理及其推论;2、初步学会运用相交弦定理及其推论;3、使学生学会作线段的比例中项.4、在推导定理的过程中培养学生由图形总结出几何性质的能力;5、在运用相交弦定理时,使学生清楚是运用几何性质,代数解法解有关弦长计算问题,培养学生的综合运用能力;教学重点: 使学生正确理解相交弦定理及其推论,这是以后学习中非常重要的定理. 教学难点:在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.而不能死记硬背,也不能只从形式上去认识定理,只知是线段的积,而对内容不加理解.教学过程:一、新课引入:前边,我们已经学习了和圆有关的角,现在我们通过圆内一点引圆的两条弦,它们之间又有什么关系呢?二、新课讲解:实际上,它们之间存在着数量关系.不妨从⊙o内一点p引圆的两条弦ab、cd,我们称它们为相交弦,这时,各弦分别被p点分成二条线段,只要连结ac、db,我们马上发现这四条线段在两个三角形中,容易证得,这两个三角形是相似的,于是得到了这四条线段的比例线段,转化成乘积式后,便得到相交弦定理,教师指导学生观察相交弦定理中的两弦的位置是任意的,当两弦的位置特殊时,会出现怎样的情形呢?请同学打开练习本画一画.学生动手画,教师巡视.

  当图7-79三个图形都出现后,教师指出,当p点重合于圆心o时,是两条直径的相交弦,结论是显然的,并且没有因为位置上的变化而发生形式上的变化.我们不研究这种情形,然后指导学生观察图7-79(3),这种特殊的位置:弦与直径垂直相交,会给相交弦定理带来怎样形式上的改变呢?最终指导学生完成相交弦定理的推论及证明.1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段的积相等.2.如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.相交弦定理及其推论是和圆有关的比例线段中的两个数量关系式,在今后学习中有着重要的意义,教师必须严格要求学生独立完成定理的证明,加深对定理的理解.练习一,p.126中1.如图7-80,ap=3cm,pb=5cm,cp=2.5cm,求cd.(答案:8.5cm)

  练习二,教材p.126中2,如图7-81,o是圆心,op⊥ab,  ap=4cm,pd=2cm.求op.(答案:3cm)

  此两题是直接运用定理或推论.p.125例1  已知圆中两条弦相交,第一条弦被交点分为12cm和16cm两段,第二条弦的长为32cm,求第二条弦被交点分成的两段的长.分析,这是一道利用相交弦定理的计算题,由于无图对照,在叙述时务必讲清第几条弦,在由相交弦定理列出方程后,解一元二次方程只作为其中一个步骤.做答案时要特别注意,对x1、x2的解释,以防止最终出现两解.解法参照教材p.126.p126例2  已知:线段a、b求作:线端  c,使c2=ab

  分析题目,可将三条线段的数量关系转化为相交弦定理的推论.若线段c作出来,它将与线段a、b在圆中构成弦与直径垂直相交的位置关系.这时学生对作法心中有数,最终教师指导学生完成作图.作法参照教材p.126.三、课堂小结:指导学生阅读教材p.125―p.126.培养学生的读书习惯,并总结出本课的主要内容:1.相交弦定理及其推论是圆中重要的比例线段,它反映了圆中两条相交弦的数量关系.推论是定理的特殊情形.二者只是形式上的不同,实质上都是一样的.需要指出的是相交弦定理涉及到四条线段,而它的推论涉及到三条线段.2.本节例1是利用相交弦定理进行计算,它是圆的有关计算题的重要部分.3.本节例2是运用相交弦定理的推论作图题,这是初中阶段务必要掌握的作图题之一,务必向学生讲清.四、布置作业1.教材p.132中9;p.133中14

和圆有关的比例线段 篇2

  教学建议

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证实.

  难点:正确地写出定理中的等积式.因为图形中的线段较多,学生轻易混淆.

  2、教学建议

  本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

  (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

  (2)在教学中,引导学生“观察――猜想――证实――应用”等学习,教师组织下,以学生为主体开展教学活动.

  第1课时:相交弦定理

  教学目标:

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证实和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到非凡的思想方法.

  教学重点:

  正确理解相交弦定理及其推论.

  教学难点:

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证实中发生错误,因此务必使学生清楚定理的提出和证实过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  (一)设置学习情境

  1、图形变换:(利用电脑使ab与cd弦变动)

  ①引导学生观察图形,发现规律:∠a=∠d,∠c=∠b.

  ②进一步得出:△apc∽△dpb.

  .

  ③假如将图形做些变换,去掉ac和bd,图中线段 pa,pb,pc,po之间的关系会发生变化吗?为什么?

  组织学生观察,并回答.

  2、证实:

  已知:弦ab和cd交于⊙o内一点p.

  求证:pa・pb=pc・pd.

  (a层学生要练习学生写出已知、求证、证实;b、c层学生在老师引导下完成)

  (证实略)

  (二)定理及推论

  1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:在⊙o中;弦ab,cd相交于点p,那么pa・pb=pc・pd.

  2、从一般到非凡,发现结论.

  对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,ab是直径,并且ab⊥cd于p.

  提问:根据相交弦定理,能得到什么结论?

  指出:pc2=pa・pb.

  请学生用文字语言将这一结论叙述出来,假如叙述不完全、不准确.教师纠正,并板书.

  推论 假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

  3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点c向直径ab作垂线,垂足是p,则pc2=pa・pb.

  若再连结ac,bc,则在图中又出现了射影定理的基本图形,于是有:

  pc2=pa・pb ;ac2=ap・ab;cb2=bp・ab

  (三)应用、反思

  例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

  引导学生根据题意列出方程并求出相应的解.

  例2 已知:线段a,b.

  求作:线段c,使c2=ab.

  分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:口述作法.

  反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1 如图,ap=2厘米,pb=2.5厘米,cp=1厘米,求cd.

  变式练习:若ap=2厘米,pb=2.5厘米,cp,dp的长度皆为整数.那么cd的长度是 多少?

  将条件隐化,增加难度,提高学生学习爱好

  练习2 如图,cd是⊙o的直径,ab⊥cd,垂足为p,ap=4厘米,pd=2厘米.求po的长.

  练习3 如图:在⊙o中,p是弦ab上一点,op⊥pc,pc 交⊙o于c. 求证:pc2=pa・pb

  引导学生分析:由ap・pb,联想到相交弦定理,于是想到延长 cp交⊙o于d,于是有pc・pd=pa・pb.又根据条件op⊥pc.易 证得pc=pd问题得证.

  (四)小结

  知识:相交弦定理及其推论;

  能力:作图能力、发现问题的能力和解决问题的能力;

  思想方法:学习了由一般到非凡(由定理直接得到推论的过程)的思想方法.

  (五)作业

  教材p132中 9,10;p134中b组4(1).

  第2课时 切割线定理

  教学目标:

  1.把握切割线定理及其推论,并初步学会运用它们进行计算和证实;

  2.把握构造相似三角形证实切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

  3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

  教学重点:

  理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

  教学难点:

  定理的灵活运用以及定理与推论问的内在联系是难点.

  教学活动设计

  (一)提出问题

  1、引出问题:相交弦定理是两弦相交于圆内一点.假如两弦延长交于圆外一点p,那么该点到割线与圆交点的四条线段pa,pb,pc,pd的长之间有什么关系?(如图1)

  当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长pa,pb,pt之间又有什么关系?

  2、猜想:引导学生猜想出图中三条线段pt,pa,pb间的关系为pt2=pa・pb.

  3、证实:

  让学生根据图2写出已知、求证,并进行分析、证实猜想.

  分析:要证pt2=pa・pb, 可以证实,为此可证以 pa・pt为边的三角形与以pt,bp为边的三角形相似,于是考虑作辅助线tp,pb.(图3).轻易证实∠pta=∠b又∠p=∠p,因此△bpt∽△tpa,于是问题可证.

  4、引导学生用语言表达上述结论.

  切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

  (二)切割线定理的推论

  1、再提出问题:当pb、pd为两条割线时,线段pa,pb,pc,pd之间有什么关系?

  观察图4,提出猜想:pa・pb=pc・pd.

  2、组织学生用多种方法证实:

  方法一:要证pa・pb=pc・pd,可证此可证以pa,pc为边的三角形和以pd,pb为边的三角形相似,所以考虑作辅助线ac,bd,轻易证实∠pac=∠d,∠p=∠p,因此△pac∽△pdb. (如图4)

  方法二:要证,还可考虑证实以pa,pd为边的三角形和以pc、pb为边的三角形相似,所以考虑作辅助线ad、cb.轻易证实∠b=∠d,又∠p=∠p. 因此△pad∽△pcb.(如图5)

  方法三:引导学生再次观察图2,立即会发现.pt2=pa・pb,同时pt2=pc・pd,于是可以得出pa・pb=pc・pd.pa・pb=pc・pd

  推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

  (三)初步应用

  例1 已知:如图6,⊙o的割线pab交⊙o于点a和b,pa=6厘米,ab=8厘米, po=10.9厘米,求⊙o的半径.

  分析:由于po既不是⊙o的切线也不是割线,故须将po延长交⊙o于d,构成了圆的一条割线,而od又恰好是⊙o的半径,于是运用切割线定理的推论,问题得解.

  (解略)教师示范解题.

  例2 已知如图7,线段ab和⊙o交于点c,d,ac=bd,ae,bf分别切⊙o于点e,f,

  求证:ae=bf.

  分析:要证实的两条线段ae,bf均与⊙o相切,且从a、b 两点出发引的割线acd和bdc在同一直线上,且ac=bd,ad=bc. 因此它们的积相等,问题得证.

  学生自主完成,教师随时纠正学生解题过程中出现的错误,如ae2=ac・cd和bf2=bd・dc等.

  巩固练习:p128练习1、2题

  (四)小结

  知识:切割线定理及推论;

  能力:结合具体图形时,应能写出正确的等积式;

  方法:在证实切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注重很好地把握.

  (五)作业教材p132中,11、12题.

  探究活动

  最佳射门位置

  国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足球门宽7.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

  分析与解 如图1所示.ab是足球门,点p是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向p上方或下方移动,视角都变小,因此点p实际上是过a、b且与边线相切的圆的切点,如图1所示.即op是圆的切线,而ob是圆的割线.

  故 ,又 ,

  ob=30.34 7.32=37.66.

  op= (米).

  注:上述解法适用于更一般情形.如图2所示.△bop可为任意角.

和圆有关的比例线段 篇3

  教学目标:1、使学生理解切割线定理及其推论;2、使学生初步学会运用切割线定理及其推论.3、通过对切割线定理及推论的证明,培养学生从几何图形归纳出几何性质的能力;4、通过对切割线定理及其推论的初步运用,培养学生的分析问题能力.在上节我们曾经学到相交弦定理及其推论,它反映了圆中两弦的数量关系;我们可以用同样的方法来研究圆的一条切线和一条割线的数量关系.教学重点: 使学生理解切割线定理及其推论,它是以后学习中经常用到的重要定理.教学难点:学生不能准确叙述切割线定理及其推论,针对具体图形学生很容易得到数量关系,但把它用语言表达,学生感到困难.教学过程:一、新课引入:我们已经学过相交弦定理及其推论,现在我们用同样的数学思想方法来研究圆的另外的比例线段.二、新课讲解:现在请同学们在练习本上画⊙o,在⊙o外一点p引⊙o的切线pt,切点为t,割线pba,以点p、b、a、t为顶点作三角形,可以作几个三角形呢?它们中是否存在着相似三角形?如果存在,你得到了怎样的比例线段?可转化成怎样的积式?现在请同学们打开练习本,按要求作⊙o的切线pt和割线pba,后研究讨论一下.学生动手画图,完成证明,教师巡视,当所有学生都得到数量关系式时,教师打开计算机或幻灯机用动画演示.最终教师指导学生把数量关系转成语言叙述,完成切割线定理及其推论.1.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.关系式:pt2=pa・pb

  2.切割线定理推论:从圆外一点引圆的两条割线.这一点到每条割线与圆的交点的两条线段长的积相等.数量关系式:pa・pb=pc・pb.

  切割线定理及其推论也是圆中的比例线段,在今后的学习中有着重要的意义,务必使学生清楚,真正弄懂切割线定理的数量关系后,再把握定理叙述中的“从”、“引”、“切线长”、“两条线段长”等关键字样,定理叙述并不困难.练习一,p.128中1、选择题:如图7-86,⊙o的两条弦ab、cd相交于点e,ac和db的延长线交于点p,下列结论成立的是                                                                               [    ]

  a.pc・ca=pb・bdb.ce・ae=be・edc.ce・cd=be・bad.pb・pd=pc・pa答案:(d),直接运用和圆有关的比例线段进行选择.练习二,p.128中2、如图7-87,已知:rt△abc的两条直角边ac、bc的长分别为3cm、4cm,以ac为直径作圆与斜边ab交于点d,求bd的长.

  此题已知rt△abc中的边ac、bc,则ab可知.容易证出bc切⊙o于c,于是产生切割线定理,bd可求.练习三,p.128中3.如图7-88,线段ab和⊙o交于c、d,ac=bd,ae、bf分别切⊙o于e、f.求证:ae=bf.

  本题可直接运用切割线定理.例3  p.127,如图7-89,已知:⊙o的割线pab交⊙o于点a和b,pa=6cm,ab=8cm,po=10.9cm.求⊙o的半径.

  此题要通过计算得到⊙o的半径,必须使半径进入一个数量关系式,观察图形,可知只要延长po与圆交于另一点,则可产生切割线定理的推论,而其中一条割线恰好经过圆心,在线段中自然可以参与进半径,从而由等式中求出半径.必须使学生清楚这种数学思想方法,结合图形,正确使用和圆有关的比例线段,则关系式中必有两条线段是半径的代数式构成,只要解关于半径的一元二次方程即可.解:设⊙o的半径为r,po和它的长延长线交⊙o于c、d.(10.9-r)(10.9+r)=6×14r=5.9(取正数解)答:⊙o的半径为5.9.三、课堂小结:为培养学生阅读教材的习惯,让学生看教材p.127―p.128.总结出本课主要内容:1.切割线定理及其推论:它是圆的重要比例线段,它反映的是圆的切线和割线所产生的数量关系.需要指出的是,只有从圆外一点,才可能产生切割线定理或推论.切割线定理是指一条切线和一条割线;推论是指两条割线,只有使学生弄清前提,才能正确运用定理.2.通过对例3的分析,我们应该掌握这类问题的思想方法,掌握规律、运用规律.四、布置作业:1.教材  p.132中10;2.p.132中11.

和圆有关的比例线段 篇4

  教学建议

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

  难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

  2、教学建议

  本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

  (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

  (2)在教学中,引导学生“观察――猜想――证明――应用”等学习,教师组织下,以学生为主体开展教学活动.

  第1课时:相交弦定理

  教学目标 

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

  教学重点

  正确理解相交弦定理及其推论.

  教学难点 

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  (一)设置学习情境

  1、图形变换:(利用电脑使AB与CD弦变动)

  ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

  ②进一步得出:△APC∽△DPB.

  .

  ③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

  组织学生观察,并回答.

  2、证明:

  已知:弦AB和CD交于⊙O内一点P.

  求证:PA・PB=PC・PD.

  (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

  (证明略)

  (二)定理及推论

  1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA・PB=PC・PD.

  2、从一般到特殊,发现结论.

  对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且AB⊥CD于P.

  提问:根据相交弦定理,能得到什么结论?

  指出:PC2=PA・PB.

  请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

  推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

  3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA・PB. 

  若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

  PC2=PA・PB ;AC2=AP・AB;CB2=BP・AB

  (三)应用、反思

  例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

  引导学生根据题意列出方程并求出相应的解.

  例2  已知:线段a,b.

  求作:线段c,使c2=ab.

  分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:口述作法.

  反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

  变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

  将条件隐化,增加难度,提高学生学习兴趣

  练习2 如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

  练习3  如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC 交⊙O于C.  求证:PC2=PA・PB 

  引导学生分析:由AP・PB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PC・PD=PA・PB.又根据条件OP⊥PC.易 证得PC=PD问题得证.

  (四)小结

  知识:相交弦定理及其推论;

  能力:作图能力、发现问题的能力和解决问题的能力;

  思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

  (五)作业 

  教材P132中 9,10;P134中B组4(1).

  第2课时 切割线定理

  教学目标 

  1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

  2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

  3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

  教学重点

  理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

  教学难点 

  定理的灵活运用以及定理与推论问的内在联系是难点.

  教学活动设计

  (一)提出问题

  1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

  当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

  2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA・PB.

  3、证明:

  让学生根据图2写出已知、求证,并进行分析、证明猜想.

  分析:要证PT2=PA・PB,  可以证明,为此可证以 PA・PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

  4、引导学生用语言表达上述结论.

  切割线定理  从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

  (二)切割线定理的推论

  1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

  观察图4,提出猜想:PA・PB=PC・PD.

  2、组织学生用多种方法证明:

  方法一:要证PA・PB=PC・PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.  (如图4)

  方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.  因此△PAD∽△PCB.(如图5)

  方法三:引导学生再次观察图2,立即会发现.PT2=PA・PB,同时PT2=PC・PD,于是可以得出PA・PB=PC・PD.PA・PB=PC・PD

  推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

  (三)初步应用

  例1  已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

  分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

  (解略)教师示范解题.

  例2  已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

  求证:AE=BF.

  分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.  因此它们的积相等,问题得证.

  学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC・CD和BF2=BD・DC等.

  巩固练习:P128练习1、2 

  (四)小结

  知识:切割线定理及推论;

  能力:结合具体图形时,应能写出正确的等积式;

  方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

  (五)作业 教材P132中,11、12题.

  探究活动

  最佳射门位置

  国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

  分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

  故 ,又 ,

  OB=30.34+7.32=37.66.

  OP=(米).

  注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

和圆有关的比例线段 篇5

  教学建议

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

  难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

  2、教学建议

  本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

  (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

  (2)在教学中,引导学生“观察――猜想――证明――应用”等学习,教师组织下,以学生为主体开展教学活动.

  第1课时:相交弦定理

  教学目标 

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

  教学重点

  正确理解相交弦定理及其推论.

  教学难点 

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  (一)设置学习情境

  1、图形变换:(利用电脑使AB与CD弦变动)

  ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

  ②进一步得出:△APC∽△DPB.

  .

  ③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

  组织学生观察,并回答.

  2、证明:

  已知:弦AB和CD交于⊙O内一点P.

  求证:PA・PB=PC・PD.

  (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

  (证明略)

  (二)定理及推论

  1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA・PB=PC・PD.

  2、从一般到特殊,发现结论.

  对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且AB⊥CD于P.

  提问:根据相交弦定理,能得到什么结论?

  指出:PC2=PA・PB.

  请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

  推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

  3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA・PB. 

  若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

  PC2=PA・PB ;AC2=AP・AB;CB2=BP・AB

  (三)应用、反思

  例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

  引导学生根据题意列出方程并求出相应的解.

  例2  已知:线段a,b.

  求作:线段c,使c2=ab.

  分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:口述作法.

  反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

  变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

  将条件隐化,增加难度,提高学生学习兴趣

  练习2 如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

  练习3  如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC 交⊙O于C.  求证:PC2=PA・PB 

  引导学生分析:由AP・PB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PC・PD=PA・PB.又根据条件OP⊥PC.易 证得PC=PD问题得证.

  (四)小结

  知识:相交弦定理及其推论;

  能力:作图能力、发现问题的能力和解决问题的能力;

  思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

  (五)作业 

  教材P132中 9,10;P134中B组4(1).

  第2课时 切割线定理

  教学目标 

  1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

  2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

  3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

  教学重点

  理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

  教学难点 

  定理的灵活运用以及定理与推论问的内在联系是难点.

  教学活动设计

  (一)提出问题

  1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

  当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

  2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA・PB.

  3、证明:

  让学生根据图2写出已知、求证,并进行分析、证明猜想.

  分析:要证PT2=PA・PB,  可以证明,为此可证以 PA・PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

  4、引导学生用语言表达上述结论.

  切割线定理  从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

  (二)切割线定理的推论

  1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

  观察图4,提出猜想:PA・PB=PC・PD.

  2、组织学生用多种方法证明:

  方法一:要证PA・PB=PC・PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.  (如图4)

  方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.  因此△PAD∽△PCB.(如图5)

  方法三:引导学生再次观察图2,立即会发现.PT2=PA・PB,同时PT2=PC・PD,于是可以得出PA・PB=PC・PD.PA・PB=PC・PD

  推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

  (三)初步应用

  例1  已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

  分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

  (解略)教师示范解题.

  例2  已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

  求证:AE=BF.

  分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.  因此它们的积相等,问题得证.

  学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC・CD和BF2=BD・DC等.

  巩固练习:P128练习1、2 

  (四)小结

  知识:切割线定理及推论;

  能力:结合具体图形时,应能写出正确的等积式;

  方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

  (五)作业 教材P132中,11、12题.

  探究活动

  最佳射门位置

  国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

  分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

  故 ,又 ,

  OB=30.34+7.32=37.66.

  OP= (米).

  注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

和圆有关的比例线段 篇6

  教学建议

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

  难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

  2、教学建议

  本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

  (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

  (2)在教学中,引导学生“观察――猜想――证明――应用”等学习,教师组织下,以学生为主体开展教学活动.

  第1课时:相交弦定理

  教学目标 

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

  教学重点

  正确理解相交弦定理及其推论.

  教学难点 

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  (一)设置学习情境

  1、图形变换:(利用电脑使AB与CD弦变动)

  ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

  ②进一步得出:△APC∽△DPB.

  .

  ③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

  组织学生观察,并回答.

  2、证明:

  已知:弦AB和CD交于⊙O内一点P.

  求证:PA・PB=PC・PD.

  (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

  (证明略)

  (二)定理及推论

  1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA・PB=PC・PD.

  2、从一般到特殊,发现结论.

  对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且AB⊥CD于P.

  提问:根据相交弦定理,能得到什么结论?

  指出:PC2=PA・PB.

  请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

  推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

  3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA・PB. 

  若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

  PC2=PA・PB ;AC2=AP・AB;CB2=BP・AB

  (三)应用、反思

  例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

  引导学生根据题意列出方程并求出相应的解.

  例2  已知:线段a,b.

  求作:线段c,使c2=ab.

  分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:口述作法.

  反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

  变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

  将条件隐化,增加难度,提高学生学习兴趣

  练习2 如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

  练习3  如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC 交⊙O于C.  求证:PC2=PA・PB 

  引导学生分析:由AP・PB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PC・PD=PA・PB.又根据条件OP⊥PC.易 证得PC=PD问题得证.

  (四)小结

  知识:相交弦定理及其推论;

  能力:作图能力、发现问题的能力和解决问题的能力;

  思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

  (五)作业 

  教材P132中 9,10;P134中B组4(1).

  第2课时 切割线定理

  教学目标 

  1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

  2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

  3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

  教学重点

  理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

  教学难点 

  定理的灵活运用以及定理与推论问的内在联系是难点.

  教学活动设计

  (一)提出问题

  1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

  当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

  2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA・PB.

  3、证明:

  让学生根据图2写出已知、求证,并进行分析、证明猜想.

  分析:要证PT2=PA・PB,  可以证明,为此可证以 PA・PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

  4、引导学生用语言表达上述结论.

  切割线定理  从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

  (二)切割线定理的推论

  1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

  观察图4,提出猜想:PA・PB=PC・PD.

  2、组织学生用多种方法证明:

  方法一:要证PA・PB=PC・PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.  (如图4)

  方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.  因此△PAD∽△PCB.(如图5)

  方法三:引导学生再次观察图2,立即会发现.PT2=PA・PB,同时PT2=PC・PD,于是可以得出PA・PB=PC・PD.PA・PB=PC・PD

  推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

  (三)初步应用

  例1  已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

  分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

  (解略)教师示范解题.

  例2  已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

  求证:AE=BF.

  分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.  因此它们的积相等,问题得证.

  学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC・CD和BF2=BD・DC等.

  巩固练习:P128练习1、2 

  (四)小结

  知识:切割线定理及推论;

  能力:结合具体图形时,应能写出正确的等积式;

  方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

  (五)作业 教材P132中,11、12题.

  探究活动

  最佳射门位置

  国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

  分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

  故 ,又 ,

  OB=30.34+7.32=37.66.

  OP= (米).

  注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

和圆有关的比例线段 篇7

  教学建议

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

  难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

  2、教学建议

  本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

  (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

  (2)在教学中,引导学生“观察――猜想――证明――应用”等学习,教师组织下,以学生为主体开展教学活动.

  第1课时:相交弦定理

  教学目标:

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

  教学重点:

  正确理解相交弦定理及其推论.

  教学难点:

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  (一)设置学习情境

  1、图形变换:(利用电脑使AB与CD弦变动)

  ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

  ②进一步得出:△APC∽△DPB.

  .

  ③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

  组织学生观察,并回答.

  2、证明:

  已知:弦AB和CD交于⊙O内一点P.

  求证:PA・PB=PC・PD.

  (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

  (证明略)

  (二)定理及推论

  1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA・PB=PC・PD.

  2、从一般到特殊,发现结论.

  对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且AB⊥CD于P.

  提问:根据相交弦定理,能得到什么结论?

  指出:PC2=PA・PB.

  请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

  推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

  3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA・PB. 

  若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

  PC2=PA・PB ;AC2=AP・AB;CB2=BP・AB

  (三)应用、反思

  例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

  引导学生根据题意列出方程并求出相应的解.

  例2  已知:线段a,b.

  求作:线段c,使c2=ab.

  分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:口述作法.

  反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

  变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

  将条件隐化,增加难度,提高学生学习兴趣

  练习2 如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

  练习3  如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC 交⊙O于C.  求证:PC2=PA・PB 

  引导学生分析:由AP・PB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PC・PD=PA・PB.又根据条件OP⊥PC.易 证得PC=PD问题得证.

  (四)小结

  知识:相交弦定理及其推论;

  能力:作图能力、发现问题的能力和解决问题的能力;

  思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

  (五)作业 

  教材P132中 9,10;P134中B组4(1).

  第2课时 切割线定理

  教学目标:

  1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

  2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

  3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

  教学重点:

  理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

  教学难点:

  定理的灵活运用以及定理与推论问的内在联系是难点.

  教学活动设计

  (一)提出问题

  1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

  当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

  2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA・PB.

  3、证明:

  让学生根据图2写出已知、求证,并进行分析、证明猜想.

  分析:要证PT2=PA・PB,  可以证明,为此可证以 PA・PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

  4、引导学生用语言表达上述结论.

  切割线定理  从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

  (二)切割线定理的推论

  1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

  观察图4,提出猜想:PA・PB=PC・PD.

  2、组织学生用多种方法证明:

  方法一:要证PA・PB=PC・PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.  (如图4)

  方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.  因此△PAD∽△PCB.(如图5)

  方法三:引导学生再次观察图2,立即会发现.PT2=PA・PB,同时PT2=PC・PD,于是可以得出PA・PB=PC・PD.PA・PB=PC・PD

  推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

  (三)初步应用

  例1  已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

  分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

  (解略)教师示范解题.

  例2  已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

  求证:AE=BF.

  分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.  因此它们的积相等,问题得证.

  学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC・CD和BF2=BD・DC等.

  巩固练习:P128练习1、2 

  (四)小结

  知识:切割线定理及推论;

  能力:结合具体图形时,应能写出正确的等积式;

  方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

  (五)作业 教材P132中,11、12题.

  探究活动

  最佳射门位置

  国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足球门宽7.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

  分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

  故 ,又 ,

  OB=30.34+7.32=37.66.

  OP=(米).

  注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

和圆有关的比例线段 篇8

  教学建议

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

  难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

  2、教学建议

  本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

  (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

  (2)在教学中,引导学生“观察――猜想――证明――应用”等学习,教师组织下,以学生为主体开展教学活动.

  第1课时:相交弦定理

  教学目标:

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

  教学重点:

  正确理解相交弦定理及其推论.

  教学难点:

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  (一)设置学习情境

  1、图形变换:(利用电脑使AB与CD弦变动)

  ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

  ②进一步得出:△APC∽△DPB.

  .

  ③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

  组织学生观察,并回答.

  2、证明:

  已知:弦AB和CD交于⊙O内一点P.

  求证:PA・PB=PC・PD.

  (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

  (证明略)

  (二)定理及推论

  1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA・PB=PC・PD.

  2、从一般到特殊,发现结论.

  对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且AB⊥CD于P.

  提问:根据相交弦定理,能得到什么结论?

  指出:PC2=PA・PB.

  请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

  推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

  3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA・PB. 

  若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

  PC2=PA・PB ;AC2=AP・AB;CB2=BP・AB

  (三)应用、反思

  例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

  引导学生根据题意列出方程并求出相应的解.

  例2  已知:线段a,b.

  求作:线段c,使c2=ab.

  分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:口述作法.

  反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

  变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

  将条件隐化,增加难度,提高学生学习兴趣

  练习2 如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

  练习3  如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC 交⊙O于C.  求证:PC2=PA・PB 

  引导学生分析:由AP・PB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PC・PD=PA・PB.又根据条件OP⊥PC.易 证得PC=PD问题得证.

  (四)小结

  知识:相交弦定理及其推论;

  能力:作图能力、发现问题的能力和解决问题的能力;

  思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

  (五)作业 

  教材P132中 9,10;P134中B组4(1).

  第 1 2 页  

和圆有关的比例线段 篇9

  教学目标:1、使学生能在证题或计算中熟练应用和圆有关的比线段.2、培养学生对知识的综合运用.3、训练学生注意新旧知识的结合,不断提高综合运用知识的能力;4、学会分析一些基本图形的结构及其所具有的关系式;5、善于总结一些常见类型的题目的解法和常用的添加辅助线的方法.教学重点: 指导学生分析好题目,找出正确的解题思路.教学难点:将和圆有关的比例线段结合原有知识的过程中,学生的分析不到位,很容易对题目产生无从入手的感觉.教学过程:一、新课引入:我们已经学习了和圆有关的比例线段,现在我们将综合这一部分知识,结合原有知识解决一些几何问题. 在证明线段相等、角相等、线段成比例等问题中,相交弦定理和切割线定理同切线长定理、弦切角定理一样重要.这两个定理并不难掌握,由于习题的综合性,故对于一些知识点较多、运用知识较灵活的习题中,大家证起来往往感到困难,因此除了复习好原有知识外,更重要的是搞好题目分析,这是证题关键.就本课p.129例4,指导学生搞好题目分析,并完成证明.二、新课讲解:p.129例4如图7-90,两个以o为圆心的同心圆,ab切大圆于b,ac切小圆于c,交大圆于d、e.ab=12,ao=15,ad=8.求:两圆的半径.

  分析:题目要求的圆半径显然应该连结过切点的半径ob、oc.由切线的性质知∠abo=∠aco=rt∠,因此ob,oc分别是rt△的一边,利用勾股定理计算是最直接了当的了.(1)在rt△abo中,已知ab、ao,故bo可求.(2)oc在rt△aco中,仅知道ao的长,必须得求出ac,才可以求oc.ac是大⊙o的割线ade的一部分.ac=ad=dc,ad已知,只所以应该先求ae.在大⊙o中,由切割线定理:ab2=ad・ae,ae可求,则dc可求,ac可求,从而oc可求.解:连结ob、oc.练习一,p.130中1、如图7-91,p为⊙o外一点,op与⊙o交于点a,割线pbc与⊙o交于点b、c,且pb=bc.如图oa=7,pa=2,求pc的长.

  此题中op经过圆心o,属于切割线定理的一种基本图形.辅助线是延长po交⊙o于d,由于半径oa已知,所以pd已知,而已知pb=bc,则由切割线定理的推论,可先求出pb,pc亦可求.解:延长po交⊙o于d.pbc、pad都是⊙o的割线pb・2pb=2×16pc=8练习二,p.130中2.已知:如图7-92,⊙o和⊙o′都经过a和b,pq切⊙o于p,交⊙o′于q、m,交ab的延长线于n.求证:pn2=nm・nq.

  观察图形,要证的数量关系中,线段属于不同的两圆,np是⊙o的切线,nmq是⊙o′的割线,能够把这两条线联系在一起的是两圆的公共割线nba.具备了在两圆中运用切割线定理及其推论的条件.练习三,如图7-93,四边形abcd内接于⊙o,ab长7cm,cd=10cm,ad∶bc=1∶2,延长ba、cd相交于e,从e引圆的切线ef.求ef的长.

  此题中ef是⊙o的切线,由切割线定理:ef2=ed・ec=ea・eb,故要求ef的长,须知ed或ea的长,而四边形abcd内接于⊙o,可eb长为2x,应用割线定理,可求得x,于是ef可求.证明:四边形abcd内接于⊙o△ead∽△ecbeb=2(x+10)=(2x-7)・2=8ef2=8×(8+10)ef=12答:ef长为12cm.三、课堂小结:让学生阅读p.129例4,并就本节内容总结出以下几点:1.要经常复习学过的知识,把新旧知识结合起来,不断提高综合运用知识的能力.2.学习例题时,不要就题论题,而是注重研究思路、体会和掌握方法,学会分析问题和解决问题的一般方法.3.学会分析一些基本图形的结构及所具有的基本关系式.4.总结规律:本课练习3以方程的思想方法为指导,利用代数方法,即通过方程或方程组的求解解决所求问题,设未知数时,可直接或间接设,本题属于间接设.列方程或方程组时,寻求已知量与未知量之间的关系.而几何定理是列方程的根据.本题方程是根据割线定理列出.四、布置作业:1.教材p133中12、13. 2. p.133至p.134中1、2、3、4、5.

221381
领取福利

微信扫码领取福利

和圆有关的比例线段(精选9篇)

微信扫码分享