平行四边形及其性质(通用15篇)
平行四边形及其性质 篇1
教学建议
1.知识结构
2.重点和难点分析
重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理2的推论,推论的应用有两个条件:一个是夹在两条平行线间;一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.
难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.
3.教法建议
(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.
(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.
(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.
第一课时
一、素质教育目标
(一)知识教学点
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2.
3.并能运用这些知识进行有关的证明或计算.
(二)能力训练点
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
(三)德育渗透点
通过要求学生书写规范,培养学生科学严谨的学风.
(四)美育渗透点
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美
二、学法引导
阅读、思考、讲解、分析、转化
三、重点・难点・疑点及解决办法
1.教学重点:平行四边形性质定理的应用
2.教学难点 :正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.
四、课时安排
2课时
五、教具学具准备
教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
第一课时
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
图1
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“ ”表示,如图1就是平行四边形 ,记作“ ”.
图1
3.平行四边形的性质
讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.
平行四边形性质定理1:平行四边形的对角相等.
平行四边形性质定理2:平行四边形对边相等.
(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)
图2
如图3, , .
所以四边形 是平行四边形,所以 .
由此得到
推论:夹在两条平行线间的平行线段相等.
图3要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出 .
图4
4.平行线间的距离
从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.
我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.
图5
注意:(1)两相交直线无距离可言.
(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.
例1 已知:如图1, , .
求证:(1) ; ; .
(2)△ 的顶点分别是△ 各边的中点(证法略),课堂提问(投影打出). 图1
①平行四边形两邻边的比为2:5,周长为28cm,则四条边长分别为___________.
②在 中,若 ,则 , .
【总结、扩展】
1.小结
本堂所讲的主要内容有
(1)平行四边形的概念,要理解这个概念的实质.
(2)平行四边形的部分性质.
①关于边的:对边平行;对边相等.
②关于角的:对角相等;邻角互补.
(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.
2.思考:如图.已知: 平面 , , 求证: .
八、布置作业
教材P141.2 (1)、(2)、(3) P142中 3(1)
九、板书设计
十、随堂练习
教材P.133中1、2、3
补充1.在 中 (1)若 ,则 度, 度, 度;(2)若 ,则 度, 度;(3)若 ,则 度, 度.
2. 中,周长为 ,△ 的周长比△ 周长多 则 , .
3. 中, 的平分线分 为长是 和 的两线段则 的周长是___________cm.
平行四边形及其性质 篇2
教学建议
1.知识结构
2.重点和难点分析
重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理2的推论,推论的应用有两个条件:一个是夹在两条平行线间;一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.
难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.
3.教法建议
(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.
(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.
(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.
第一课时
一、素质教育目标
(一)知识教学点
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2.
3.并能运用这些知识进行有关的证明或计算.
(二)能力训练点
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
(三)德育渗透点
通过要求学生书写规范,培养学生科学严谨的学风.
(四)美育渗透点
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美
二、学法引导
阅读、思考、讲解、分析、转化
三、重点・难点・疑点及解决办法
1.教学重点:平行四边形性质定理的应用
2.教学难点 :正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.
四、课时安排
2课时
五、教具学具准备
教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
第一课时
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
图1
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“ ”表示,如图1就是平行四边形 ,记作“ ”.
图1
3.平行四边形的性质
讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.
平行四边形性质定理1:平行四边形的对角相等.
平行四边形性质定理2:平行四边形对边相等.
(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)
图2
如图3, , .
所以四边形 是平行四边形,所以 .
由此得到
推论:夹在两条平行线间的平行线段相等.
图3要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出 .
图4
4.平行线间的距离
从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.
我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.
图5
注意:(1)两相交直线无距离可言.
(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.
例1 已知:如图1, , .
求证:(1) ; ; .
(2)△ 的顶点分别是△ 各边的中点(证法略),课堂提问(投影打出).图1
①平行四边形两邻边的比为2:5,周长为28cm,则四条边长分别为___________.
②在 中,若 ,则 , .
【总结、扩展】
1.小结
本堂所讲的主要内容有
(1)平行四边形的概念,要理解这个概念的实质.
(2)平行四边形的部分性质.
①关于边的:对边平行;对边相等.
②关于角的:对角相等;邻角互补.
(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.
2.思考:如图.已知: 平面 , , 求证: .
八、布置作业
教材P141.2 (1)、(2)、(3) P142中 3(1)
九、板书设计
十、随堂练习
教材P.133中1、2、3
补充1.在 中 (1)若 ,则 度, 度, 度;(2)若 ,则 度, 度;(3)若 ,则 度, 度.
2. 中,周长为 ,△ 的周长比△ 周长多 则 , .
3. 中, 的平分线分 为长是 和 的两线段则 的周长是___________cm.
平行四边形及其性质 篇3
七、教学步骤
复习提问
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1, ,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
引入新课
在证实“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证实的.假如把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
讲解新课
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性熟悉,然后引导学生写出已知,求证、证实.
(2)平行四边形性质,定理的综合应用:
同学们已经把握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2 已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.
求证:.
证实比较轻易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注重及时应用新知识,防止思维定势.如这里可直接由定理3得出 ,而不再重复定理的推导过程证出.
图4
例3 已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为 .
(4)学生自己完成解答.
图5
总结、扩展
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材p144中 b.4
八、布置作业
教材p141中2(4);p142中3(2)、4、5、6.
九、板书设计
标题例2
小结(表格)
平行四边形性质3例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首.
十、随堂练习
教材p.134中1、2
补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.
2.在中, , , ,则 .
3.已知 是 的 边上任一点,则 : 的值为____.
a. b. c. d.不确定
平行四边形及其性质 篇4
教学建议
1.知识结构
2.重点和难点分析
重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理2的推论,推论的应用有两个条件:一个是夹在两条平行线间;一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.
难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.
3.教法建议
(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.
(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.
(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.
第一课时
一、素质教育目标
(一)知识教学点
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2.
3.并能运用这些知识进行有关的证明或计算.
(二)能力训练点
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
(三)德育渗透点
通过要求学生书写规范,培养学生科学严谨的学风.
(四)美育渗透点
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美
二、学法引导
阅读、思考、讲解、分析、转化
三、重点・难点・疑点及解决办法
1.教学重点:平行四边形性质定理的应用
2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.
四、课时安排
2课时
五、教具学具准备
教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
第一课时
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
图1
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“ ”表示,如图1就是平行四边形 ,记作“ ”.
图1
3.平行四边形的性质
讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.
平行四边形性质定理1:平行四边形的对角相等.
平行四边形性质定理2:平行四边形对边相等.
(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)
图2
如图3, , .
所以四边形 是平行四边形,所以 .
由此得到
推论:夹在两条平行线间的平行线段相等.
图3要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出 .
图4
4.平行线间的距离
从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.
我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.
图5
注意:(1)两相交直线无距离可言.
(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.
例1 已知:如图1, , .
求证:(1) ; ; .
(2)△ 的顶点分别是△ 各边的中点(证法略),课堂提问(投影打出).图1
①平行四边形两邻边的比为2:5,周长为28cm,则四条边长分别为___________.
②在 中,若 ,则 , .
【总结、扩展】
1.小结
本堂所讲的主要内容有
(1)平行四边形的概念,要理解这个概念的实质.
(2)平行四边形的部分性质.
①关于边的:对边平行;对边相等.
②关于角的:对角相等;邻角互补.
(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.
2.思考:如图.已知: 平面 , , 求证: .
八、布置作业
教材P141.2 (1)、(2)、(3) P142中 3(1)
九、板书设计
十、随堂练习
教材P.133中1、2、3
补充1.在 中 (1)若 ,则 度, 度, 度;(2)若 ,则 度, 度;(3)若 ,则 度, 度.
2. 中,周长为 ,△ 的周长比△ 周长多 则 , .
3. 中, 的平分线分 为长是 和 的两线段则 的周长是___________cm.
平行四边形及其性质 篇5
教学建议
1.知识结构
2.重点和难点分析
重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理2的推论,推论的应用有两个条件:一个是夹在两条平行线间;一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.
难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.
3.教法建议
(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.
(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.
(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.
第一课时
一、素质教育目标
(一)知识教学点
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2.
3.并能运用这些知识进行有关的证明或计算.
(二)能力训练点
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
(三)德育渗透点
通过要求学生书写规范,培养学生科学严谨的学风.
(四)美育渗透点
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美
二、学法引导
阅读、思考、讲解、分析、转化
三、重点・难点・疑点及解决办法
1.教学重点:平行四边形性质定理的应用
2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.
四、课时安排
2课时
五、教具学具准备
教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
第一课时
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
图1
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“ ”表示,如图1就是平行四边形 ,记作“ ”.
图1
3.平行四边形的性质
讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.
平行四边形性质定理1:平行四边形的对角相等.
平行四边形性质定理2:平行四边形对边相等.
(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)
图2
如图3, , .
所以四边形 是平行四边形,所以 .
由此得到
推论:夹在两条平行线间的平行线段相等.
图3要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出 .
图4
4.平行线间的距离
从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.
我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.
图5
注意:(1)两相交直线无距离可言.
(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.
例1 已知:如图1, , .
求证:(1) ; ; .
(2)△ 的顶点分别是△ 各边的中点(证法略),课堂提问(投影打出).图1
①平行四边形两邻边的比为2:5,周长为28cm,则四条边长分别为___________.
②在 中,若 ,则 , .
【总结、扩展】
1.小结
本堂所讲的主要内容有
(1)平行四边形的概念,要理解这个概念的实质.
(2)平行四边形的部分性质.
①关于边的:对边平行;对边相等.
②关于角的:对角相等;邻角互补.
(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.
2.思考:如图.已知: 平面 , , 求证: .
八、布置作业
教材P141.2 (1)、(2)、(3) P142中 3(1)
九、板书设计
十、随堂练习
教材P.133中1、2、3
补充1.在 中 (1)若 ,则 度, 度, 度;(2)若 ,则 度, 度;(3)若 ,则 度, 度.
2. 中,周长为 ,△ 的周长比△ 周长多 则 , .
3. 中, 的平分线分 为长是 和 的两线段则 的周长是___________cm.
平行四边形及其性质 篇6
教学建议
1.知识结构
2.重点和难点分析
重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理2的推论,推论的应用有两个条件:一个是夹在两条平行线间;一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.
难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.
3.教法建议
(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.
(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.
(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.
第一课时
一、素质教育目标
(一)知识教学点
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2.
3.并能运用这些知识进行有关的证明或计算.
(二)能力训练点
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
(三)德育渗透点
通过要求学生书写规范,培养学生科学严谨的学风.
(四)美育渗透点
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美
二、学法引导
阅读、思考、讲解、分析、转化
三、重点・难点・疑点及解决办法
1.教学重点:平行四边形性质定理的应用
2.教学难点 :正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.
四、课时安排
2课时
五、教具学具准备
教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
第一课时
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
图1
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“ ”表示,如图1就是平行四边形 ,记作“ ”.
图1
3.平行四边形的性质
讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.
平行四边形性质定理1:平行四边形的对角相等.
平行四边形性质定理2:平行四边形对边相等.
(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)
图2
如图3, , .
所以四边形 是平行四边形,所以 .
由此得到
推论:夹在两条平行线间的平行线段相等.
图3要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出 .
图4
4.平行线间的距离
从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.
我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.
图5
注意:(1)两相交直线无距离可言.
(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.
例1 已知:如图1, , .
求证:(1) ; ; .
(2)△ 的顶点分别是△ 各边的中点(证法略),课堂提问(投影打出). 图1
①平行四边形两邻边的比为2:5,周长为28cm,则四条边长分别为___________.
②在 中,若 ,则 , .
【总结、扩展】
1.小结
本堂所讲的主要内容有
(1)平行四边形的概念,要理解这个概念的实质.
(2)平行四边形的部分性质.
①关于边的:对边平行;对边相等.
②关于角的:对角相等;邻角互补.
(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.
2.思考:如图.已知: 平面 , , 求证: .
八、布置作业
教材P141.2 (1)、(2)、(3) P142中 3(1)
九、板书设计
十、随堂练习
教材P.133中1、2、3
补充1.在 中 (1)若 ,则 度, 度, 度;(2)若 ,则 度, 度;(3)若 ,则 度, 度.
2. 中,周长为 ,△ 的周长比△ 周长多 则 , .
3. 中, 的平分线分 为长是 和 的两线段则 的周长是___________cm.
平行四边形及其性质 篇7
平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程 设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素――顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素――边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在 ABCD中,AB=a,BC=b,∠A=50°,则 ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在 ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知 ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在 ABCD中,AB=8cm,BC=10cm,∠B=30°,S ABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2 已知:如图4-16, ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在 ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形: C′BCA, ABCB′, ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a), ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在 ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程 设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素――顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素――边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在 ABCD中,AB=a,BC=b,∠A=50°,则 ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在 ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知 ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在 ABCD中,AB=8cm,BC=10cm,∠B=30°,S ABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2 已知:如图4-16, ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在 ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形: C′BCA, ABCB′, ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a), ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在 ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质 篇8
平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程 设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素――顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素――边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在 ABCD中,AB=a,BC=b,∠A=50°,则 ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在 ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知 ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在 ABCD中,AB=8cm,BC=10cm,∠B=30°,S ABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2 已知:如图4-16, ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在 ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形: C′BCA, ABCB′, ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a), ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在 ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质 篇9
七、教学步骤
【复习提问】
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1, ,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
【引入新课】
在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
【讲解新课】
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.
(2)平行四边形性质,定理的综合应用:
同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2 已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.
求证:.
证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出 ,而不再重复定理的推导过程证出.
图4
例3 已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为 .
(4)学生自己完成解答.
图5
【总结、扩展】
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材P144中 B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题 例2
小结(表格)
平行四边形性质3 例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首.
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.
2.在中, , , ,则 .
3.已知 是 的 边上任一点,则 : 的值为____.
A. B. C. D.不确定
平行四边形及其性质 篇10
七、教学步骤
【复习提问】
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1, ,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
【引入新课】
在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
【讲解新课】
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.
(2)平行四边形性质,定理的综合应用:
同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2 已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.
求证:.
证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出 ,而不再重复定理的推导过程证出.
图4
例3 已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为 .
(4)学生自己完成解答.
图5
【总结、扩展】
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材P144中 B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题 例2
小结(表格)
平行四边形性质3 例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首.
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.
2.在中, , , ,则 .
3.已知 是 的 边上任一点,则 : 的值为____.
A. B. C. D.不确定
平行四边形及其性质 篇11
七、教学步骤
【复习提问】
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1, ,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
【引入新课】
在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
【讲解新课】
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.
(2)平行四边形性质,定理的综合应用:
同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2 已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.
求证:.
证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出 ,而不再重复定理的推导过程证出.
图4
例3 已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为 .
(4)学生自己完成解答.
图5
【总结、扩展】
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材P144中 B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题 例2
小结(表格)
平行四边形性质3 例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首.
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.
2.在中, , , ,则 .
3.已知 是 的 边上任一点,则 : 的值为____.
A. B. C. D.不确定
平行四边形及其性质 篇12
七、教学步骤
【复习提问】
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1, ,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
【引入新课】
在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
【讲解新课】
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.
(2)平行四边形性质,定理的综合应用:
同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2 已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.
求证:.
证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出 ,而不再重复定理的推导过程证出.
图4
例3 已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为 .
(4)学生自己完成解答.
图5
【总结、扩展】
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材P144中 B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题 例2
小结(表格)
平行四边形性质3 例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首.
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.
2.在中, , , ,则 .
3.已知 是 的 边上任一点,则 : 的值为____.
A. B. C. D.不确定
平行四边形及其性质 篇13
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程 设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素――顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素――边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在 ABCD中,AB=a,BC=b,∠A=50°,则 ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在 ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知 ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在 ABCD中,AB=8cm,BC=10cm,∠B=30°,S ABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2 已知:如图4-16, ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在 ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形: C′BCA, ABCB′, ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a), ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在 ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质 篇14
七、教学步骤
【复习提问】
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1, ,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
【引入新课】
在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
【讲解新课】
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.
(2)平行四边形性质,定理的综合应用:
同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2 已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.
求证:.
证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出 ,而不再重复定理的推导过程证出.
图4
例3 已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为 .
(4)学生自己完成解答.
图5
【总结、扩展】
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材P144中 B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题 例2
小结(表格)
平行四边形性质3 例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首.
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.
2.在中, , , ,则 .
3.已知 是 的 边上任一点,则 : 的值为____.
A. B. C. D.不确定
平行四边形及其性质 篇15
七、教学步骤
【复习提问】
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1, ,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
【引入新课】
在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
【讲解新课】
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.
(2)平行四边形性质,定理的综合应用:
同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2 已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.
求证:.
证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出 ,而不再重复定理的推导过程证出.
图4
例3 已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为 .
(4)学生自己完成解答.
图5
【总结、扩展】
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材P144中 B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题 例2
小结(表格)
平行四边形性质3 例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首.
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.
2.在中, , , ,则 .
3.已知 是 的 边上任一点,则 : 的值为____.
A. B. C. D.不确定