相似三角形(精选12篇)
相似三角形 篇1
一、教学目标
1.使学生进一步理解相似比的概念,掌握的性质定理1.
2.学生掌握综合运用的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点 :是的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了的哪些性质?
3.什么叫相似比?
[讲解新课]
根据的定义,我们已经学习了的对应角相等,对应边成比例.
下面我们研究的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据的性质得到的,这种综合运用判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
相似三角形 篇2
教学建议
知识结构
本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识
4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程 中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
二、教学设计
类比学习、探索发现.
三、重点、难点
1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.
2.教学难点 :是相似比的概念及找对应边.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.
的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做
符号“∽”,读作:“相似于”,记作: ∽ ,如图所示.
∴ ∽
反之亦然.即对应角相等,对应边成比例(性质).
∵ ∽ ,
∴
另外,具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
对应边的比K,叫做相似比(或相似系数).
注:①两个的相似比具有顺序性.
如果 与 的相似比是K,那么 与 的相似比是 .
②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. ∽ ,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截 两边所得,其中 ,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现 的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.
【小结】
1.本节学习了的概念.
2.正确理解相似比的概念,为以后学习的性质打下基础.
3.重点学习了预备定理及注意的问题.
七、布置作业
教材P238中2,3.
八、板书设计
相似三角形 篇3
教学建议
知识结构
本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识
4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程 中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
二、教学设计
类比学习、探索发现.
三、重点、难点
1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.
2.教学难点 :是相似比的概念及找对应边.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.
的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做
符号“∽”,读作:“相似于”,记作: ∽ ,如图所示.
∴ ∽
反之亦然.即对应角相等,对应边成比例(性质).
∵ ∽ ,
∴
另外,具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
对应边的比K,叫做相似比(或相似系数).
注:①两个的相似比具有顺序性.
如果 与 的相似比是K,那么 与 的相似比是 .
②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. ∽ ,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截 两边所得,其中 ,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现 的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.
【小结】
1.本节学习了的概念.
2.正确理解相似比的概念,为以后学习的性质打下基础.
3.重点学习了预备定理及注意的问题.
七、布置作业
教材P238中2,3.
八、板书设计
相似三角形 篇4
教学建议
知识结构
本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识
4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
二、教学设计
类比学习、探索发现.
三、重点、难点
1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.
2.教学难点:是相似比的概念及找对应边.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.
的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做
符号“∽”,读作:“相似于”,记作: ∽ ,如图所示.
∴ ∽
反之亦然.即对应角相等,对应边成比例(性质).
∵ ∽ ,
∴
另外,具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
对应边的比K,叫做相似比(或相似系数).
注:①两个的相似比具有顺序性.
如果 与 的相似比是K,那么 与 的相似比是 .
②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. ∽ ,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截 两边所得,其中 ,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现 的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.
【小结】
1.本节学习了的概念.
2.正确理解相似比的概念,为以后学习的性质打下基础.
3.重点学习了预备定理及注意的问题.
七、布置作业
教材P238中2,3.
八、板书设计
相似三角形 篇5
教学建议
知识结构
本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识
4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程 中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
二、教学设计
类比学习、探索发现.
三、重点、难点
1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.
2.教学难点 :是相似比的概念及找对应边.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.
的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做
符号“∽”,读作:“相似于”,记作: ∽ ,如图所示.
∴ ∽
反之亦然.即对应角相等,对应边成比例(性质).
∵ ∽ ,
∴
另外,具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
对应边的比K,叫做相似比(或相似系数).
注:①两个的相似比具有顺序性.
如果 与 的相似比是K,那么 与 的相似比是 .
②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. ∽ ,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截 两边所得,其中 ,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现 的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.
【小结】
1.本节学习了的概念.
2.正确理解相似比的概念,为以后学习的性质打下基础.
3.重点学习了预备定理及注意的问题.
七、布置作业
教材P238中2,3.
八、板书设计
相似三角形 篇6
教学建议
知识结构
本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识
4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
二、教学设计
类比学习、探索发现.
三、重点、难点
1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.
2.教学难点:是相似比的概念及找对应边.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.
的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做
符号“∽”,读作:“相似于”,记作: ∽ ,如图所示.
∴ ∽
反之亦然.即对应角相等,对应边成比例(性质).
∵ ∽ ,
∴
另外,具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
对应边的比K,叫做相似比(或相似系数).
注:①两个的相似比具有顺序性.
如果 与 的相似比是K,那么 与 的相似比是 .
②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. ∽ ,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截 两边所得,其中 ,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现 的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.
【小结】
1.本节学习了的概念.
2.正确理解相似比的概念,为以后学习的性质打下基础.
3.重点学习了预备定理及注意的问题.
七、布置作业
教材P238中2,3.
八、板书设计
相似三角形 篇7
本章有以下几个主要内容:
一、比例线段
1、线段比, 2、成比例线段, 3、比例中项----黄金分割, 4、比例的性质:基本性质;合比性质;等比性质
(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项
(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形
宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质
基本性质:内项积等于外项积。(比例=====等积)。主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
二、相似三角形的判定
平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。
三、相似三角形的性质
1、定义:相似三角形对应角相等
对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比
3、相似三角形周长的比等于相似比
4、相似三角形面积的比等于相似比的平方
四、图形的位似变换
1、几何变换:平移,旋转,轴对称,相似变换
----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
----3、位似变换:两个图形不但相似,而且对应点连线过同一点的相似变换叫做位似变换。这两个图形叫做位似图形。
4、 位似变换可把图形放大或者缩小。
5、外位似(同向位似图形)位似中心在对应点连线外的位似叫外位似。这两个图形叫同向位似图形。
内位似(反向位似图形)位似中心在对应点连线上的位似叫内位似。这两个图形叫反向位似图形。
6、以原点为位似中心,相似比为k,原图形上点的坐标(x,y)则同向位似变换后对称点的坐标为(kx,ky)
以原点为位似中心,相似比为k,原图形上点的坐标(x,y) 反向位似变换后对称点的坐标为(-kx,-ky)
相似三角形 篇8
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形 篇9
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形 篇10
教学建议
知识结构
重点、难点分析
相似三角形的性质及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
教法建议
1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3.在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
相似三角形 篇11
比例线段在平面几何计算和证明中,应用十分广泛,相对于已学的两条线段相等关系而言,四条线段成比例关系对学生分析问题的能力、综合解题的能力要求更高。在学生学完“相似三角形”一章后,我们及时组织了两节复习课,第一节课着重复习比例线段的基本知识及基本技能,第二节课则采取“探究式教学”,培养学生的实践能力、探索能力,收到了较好的效果。
我们认为“探究式教学”注重学生自己提出问题或自己提出解决问题的方法、寻找问题解决的途径、体验解决问题的过程,从而提高解决问题的能力,逐步改变学生的学习方式。在初中数学教学中,开展探究式教学活动,既是对教师的教学观念和教学能力的挑战,也是培养学生创新意识和实践能力的重要途径。下面是这节课的过程描述及课后反思。
课的设计意图
在数学课堂中开展探究式学习是接受性学习的补充,它有效地促进了学生学习方式的改变,学生从被动的接受性学习变为主动的探究性学习。本案例力争在以下三个方面有所体现:
1 尊重学生主体地位
本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作―探索发现―科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。
2 教师发挥主导作用
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。三次恰到好处的电脑演示,向学生展示了电脑的省时、高效以及对数学实验的巨大帮助,推荐给他们运用电脑技术的学习研究方法。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。
3 提升学生课堂关注点
学生在体验了“实验操作――探索发现――科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。
两点思考
“探究式教学”意在通过给学生创设实践、探索的机会,让学生自觉地改变原有的被动的学习方式,培养学生的积极主动的探索创新精神。结合二期课改要求本案例的尝试也引发了一些值得继续探讨的问题。
1 在初中数学课堂中如何有效地贯彻“以接受性学习为主、探究性学习作必要的补充”的原则?
本案例是在前面的新课学习以接受性学习为主的基础上进行的,在本课的复习中对探究性学习做了必要的补充。就本课而言是以探究性学习为主,由此反思:在平时的新课学习中如何落实两者的主辅关系呢?在进行探究性学习时如何照顾到班级学生参差不齐的各个层面,使每个学生都有所获呢?对此我们还应该作更多的思考和实践。
2 在初中数学课堂中如何更好地落实“学生在独立思考的基础上进行适当的合作交流”?
相似三角形 篇12
教学建议
知识结构
重点、难点分析
及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究,以完成对相似三角形的定义、判定和性质的全面研究.还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
教法建议
1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3.在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计