欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 菱形教学示例 第二课时(通用5篇)

菱形教学示例 第二课时(通用5篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

菱形教学示例 第二课时(通用5篇)

菱形教学示例 第二课时 篇1

  一、教学目标 

  1.掌握菱形的判定.

  2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

  3.通过教具的演示培养学生的学习兴趣.

  4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点・难点・疑点及解决办法

  1.教学重点:菱形的判定方法.

  2.教学难点 :菱形判定方法的综合应用.

  四、课时安排

  1课时

  五、教具学具准备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤 

  【复习提问】

  1.叙述菱形的定义与性质.

  2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

  【引入新课】

  师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

  生答:定义法.

  此外还有别的两种判定方法,下面就来学习这两种方法.

  【讲解新课】

  菱形判定定理1:四边都相等的四边形是菱形.

  菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1

  分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

  分析判定2:

  师问:本定理有几个条件?

  生答:两个.

  师问:哪两个?

  生答:(1)是平行四边形(2)两条对角线互相垂直.

  师问:再需要什么条件可证该平行四边形是菱形?

  生答:再证两邻边相等.

  (由学生口述证明)

  证明时让学生注意线段垂直平分线在这里的应用,

  师问:对角线互相垂直的四边形是菱形吗?为什么?

  可画出图,显然对角线 ,但都不是菱形.

  菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

  注意:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

  例4  已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.

  求证:四边形 是菱形(按教材讲解).

  【总结、扩展】

  1.小结:

  (1)归纳判定菱形的四种常用方法.

  (2)说明矩形、菱形之间的区别与联系.

  2.思考题:已知:如图4△ 中, , 平分 , , , 交 于 .

  求证:四边形 为菱形.

  八、布置作业 

  教材P159中9、10、11、13(2)

  九、板书设计 

  十、随堂练习

  教材P153中1、2、3

菱形教学示例 第二课时 篇2

  一、教学目标

  1.掌握菱形的判定.

  2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

  3.通过教具的演示培养学生的学习兴趣.

  4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点・难点・疑点及解决办法

  1.教学重点:菱形的判定方法.

  2.教学难点:菱形判定方法的综合应用.

  四、课时安排

  1课时

  五、教具学具准备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤

  【复习提问】

  1.叙述菱形的定义与性质.

  2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

  【引入新课】

  师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

  生答:定义法.

  此外还有别的两种判定方法,下面就来学习这两种方法.

  【讲解新课】

  菱形判定定理1:四边都相等的四边形是菱形.

  菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1

  分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

  分析判定2:

  师问:本定理有几个条件?

  生答:两个.

  师问:哪两个?

  生答:(1)是平行四边形(2)两条对角线互相垂直.

  师问:再需要什么条件可证该平行四边形是菱形?

  生答:再证两邻边相等.

  (由学生口述证明)

  证明时让学生注意线段垂直平分线在这里的应用,

  师问:对角线互相垂直的四边形是菱形吗?为什么?

  可画出图,显然对角线 ,但都不是菱形.

  菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

  注意:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

  例4  已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.

  求证:四边形 是菱形(按教材讲解).

  【总结、扩展】

  1.小结:

  (1)归纳判定菱形的四种常用方法.

  (2)说明矩形、菱形之间的区别与联系.

  2.思考题:已知:如图4△ 中, , 平分 , , , 交 于 .

  求证:四边形 为菱形.

  八、布置作业 

  教材P159中9、10、11、13(2)

  九、板书设计

  十、随堂练习

  教材P153中1、2、3

菱形教学示例 第二课时 篇3

  一、教学目标 

  1.掌握菱形的判定.

  2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

  3.通过教具的演示培养学生的学习兴趣.

  4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点・难点・疑点及解决办法

  1.教学重点:菱形的判定方法.

  2.教学难点 :菱形判定方法的综合应用.

  四、课时安排

  1课时

  五、教具学具准备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤 

  【复习提问】

  1.叙述菱形的定义与性质.

  2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

  【引入新课】

  师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

  生答:定义法.

  此外还有别的两种判定方法,下面就来学习这两种方法.

  【讲解新课】

  菱形判定定理1:四边都相等的四边形是菱形.

  菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1

  分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

  分析判定2:

  师问:本定理有几个条件?

  生答:两个.

  师问:哪两个?

  生答:(1)是平行四边形(2)两条对角线互相垂直.

  师问:再需要什么条件可证该平行四边形是菱形?

  生答:再证两邻边相等.

  (由学生口述证明)

  证明时让学生注意线段垂直平分线在这里的应用,

  师问:对角线互相垂直的四边形是菱形吗?为什么?

  可画出图,显然对角线 ,但都不是菱形.

  菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

  注意:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

  例4  已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.

  求证:四边形 是菱形(按教材讲解).

  【总结、扩展】

  1.小结:

  (1)归纳判定菱形的四种常用方法.

  (2)说明矩形、菱形之间的区别与联系.

  2.思考题:已知:如图4△ 中, , 平分 , , , 交 于 .

  求证:四边形 为菱形.

  八、布置作业 

  教材P159中9、10、11、13(2)

  九、板书设计 

  十、随堂练习

  教材P153中1、2、3

菱形教学示例 第二课时 篇4

  一、教学目标 

  1.掌握菱形的判定.

  2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

  3.通过教具的演示培养学生的学习兴趣.

  4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点・难点・疑点及解决办法

  1.教学重点:菱形的判定方法.

  2.教学难点 :菱形判定方法的综合应用.

  四、课时安排

  1课时

  五、教具学具准备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤 

  【复习提问】

  1.叙述菱形的定义与性质.

  2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

  【引入新课】

  师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

  生答:定义法.

  此外还有别的两种判定方法,下面就来学习这两种方法.

  【讲解新课】

  菱形判定定理1:四边都相等的四边形是菱形.

  菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1

  分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

  分析判定2:

  师问:本定理有几个条件?

  生答:两个.

  师问:哪两个?

  生答:(1)是平行四边形(2)两条对角线互相垂直.

  师问:再需要什么条件可证该平行四边形是菱形?

  生答:再证两邻边相等.

  (由学生口述证明)

  证明时让学生注意线段垂直平分线在这里的应用,

  师问:对角线互相垂直的四边形是菱形吗?为什么?

  可画出图,显然对角线 ,但都不是菱形.

  菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

  注意:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

  例4  已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.

  求证:四边形 是菱形(按教材讲解).

  【总结、扩展】

  1.小结:

  (1)归纳判定菱形的四种常用方法.

  (2)说明矩形、菱形之间的区别与联系.

  2.思考题:已知:如图4△ 中, , 平分 , , , 交 于 .

  求证:四边形 为菱形.

  八、布置作业 

  教材P159中9、10、11、13(2)

  九、板书设计 

  十、随堂练习

  教材P153中1、2、3

菱形教学示例 第二课时 篇5

  一、教学目标

  1.掌握菱形的判定.

  2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

  3.通过教具的演示培养学生的学习兴趣.

  4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点・难点・疑点及解决办法

  1.教学重点:菱形的判定方法.

  2.教学难点:菱形判定方法的综合应用.

  四、课时安排

  1课时

  五、教具学具准备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤

  【复习提问】

  1.叙述菱形的定义与性质.

  2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

  【引入新课】

  师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

  生答:定义法.

  此外还有别的两种判定方法,下面就来学习这两种方法.

  【讲解新课】

  菱形判定定理1:四边都相等的四边形是菱形.

  菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1

  分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

  分析判定2:

  师问:本定理有几个条件?

  生答:两个.

  师问:哪两个?

  生答:(1)是平行四边形(2)两条对角线互相垂直.

  师问:再需要什么条件可证该平行四边形是菱形?

  生答:再证两邻边相等.

  (由学生口述证明)

  证明时让学生注意线段垂直平分线在这里的应用,

  师问:对角线互相垂直的四边形是菱形吗?为什么?

  可画出图,显然对角线 ,但都不是菱形.

  菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

  注意:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

  例4  已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.

  求证:四边形 是菱形(按教材讲解).

  【总结、扩展】

  1.小结:

  (1)归纳判定菱形的四种常用方法.

  (2)说明矩形、菱形之间的区别与联系.

  2.思考题:已知:如图4△ 中, , 平分 , , , 交 于 .

  求证:四边形 为菱形.

  八、布置作业 

  教材P159中9、10、11、13(2)

  九、板书设计

  十、随堂练习

  教材P153中1、2、3

221381
领取福利

微信扫码领取福利

菱形教学示例 第二课时(通用5篇)

微信扫码分享