欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 一次函数的图象和性质(精选8篇)

一次函数的图象和性质(精选8篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

一次函数的图象和性质(精选8篇)

一次函数的图象和性质 篇1

  一、目的要求

  1.使学生能画出正比例函数与一次函数的图象。

  2.结合图象,使学生理解正比例函数与一次函数的性质。

  3.在学习的基础上,使学生进一步理解正比例函数和一次函数的概念。

  二、内容分析

  1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

  2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

  三、教学过程 

  复习提问:

  1.什么是一次函数?什么是正比例函数?

  2.在同一直角坐标系中描点画出以下三个函数的图象:

  y=2x   y=2x-1   y=2x+1

  新课讲解:

  1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

  再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

  一般地,一次函数的图象是一条直线。

  前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

  先看两个正比例项数,

  y=0.5x

  与 y=-0.5x

  由这两个正比例函数的解析式不难看出,当x=0时,

  y=0

  即函数图象经过原点.(让学生想一想,为什么?)

  除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

  实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

  (1)先选取两点,通常选点(0,0)与点(1,k);

  (2)在坐标平面内描出点(0, o)与点(1,k);

  (3)过点(0,0)与点(1,k)做一条直线.

  这条直线就是正比例函数y=kx(k≠0)的图象.

  观察正比例函数  y=0.5x 的图象.

  这里,k=0.5>0.

  从图象上看, y随x的增大而增大.

  再观察正比例函数 y=-0.5x  的图象。

  这里,k=一0.5<0

  从图象上看, y随x的增大而减小

  实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.

  先看

  y=0.5x

  任取两对对应值. (x1,y1)与(x2,y2),

  如果x1>x2,由k=0.5>0,得

  0.5x1>0.5x2

  即   yl>y2

  这就是说,当x增大时,y也增大。

  类似地,可以说明的y=-0.5x  性质。

  从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

  一般地,正比例函数y=kx(k≠0)有下列性质:

  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小。

  2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

  y=kx+b(k,b是常数,k≠0)

  通常选取

  (o,b)与(-

  两点,

  对于例 l中的一次函效

  y=2x+1与y=-2x+1

  就分别选取

  (o,1)与(一0.5,2),

  还有

  (0,1)―与(0.5.0).

  在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b

  结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。

  对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

  课堂练习:

  教科书13.5节第一个练习第l―2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

  课堂小结:

  1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.

  2. 一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象.

  3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).

  四、课外作业 

  1.教科书习题13.5a组第l一3题.

  2.选作教科书习题13.5b组第1题.

一次函数的图象和性质 篇2

  教学目标 

  1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。

  2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。

  3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。

  教学重点

  1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。

  2、通过函数的性质及定义域范围求函数的最值。

  教学难点 

  从实际问题中抽象概括出运动变化的规律,建立函数关系式

  教学方法:讨论式教学法

  教学过程 

  例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?

  (1)几分钟让学生认真读题,理解题意

  (2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。

  解法(一)列表分析:

  设从A校调到C校x台,则调到D校(12x)台,B校调到C校是(10x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。

  根据题意:

  y =40x+80(12- x)+ 30(10-x)+50(x-4)

  y =40x+960-80x+300-30x+50x-200

  =-20x+1060(4≤x≤10,且x是正整数)

  y =-20x+1060是减函数。

  ∴当x =10时,y有最小值ymin=860

  ∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。

  解法(二)列表分析

  设从A校调到D校有x台,则调到C校(12x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8x)台,总运费为y。

  y =40(12 x)+ 80x+ 30(x 2)+50(8-x)

  =480 40x+80x+30x 60+400 50x

  =20x +820(2≤x≤8,且x是正整数)

  y =20x +820是增函数

  ∴x=2时,y有最小值ymin=860

  调配方案同解法(一)

  解法(三)列表分析:

  解略

  解法(四)列表分析:

  解略

  例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y =kx+b的关系

  (1)根据图象,求一次函数y =kx+b的表达式

  (2)设公司获得的毛利润(毛利润=销售总价成本总价)为s元

  试用销售单价x表示毛利润s;

  解:如图所示

  直线过点(600,400),(700,300)

  ∴400 =600k+b

  300 =700k+b

  k =-1,b =1000

  ∴ y =- x + 1000(500≤x≤800)

  s =x(1000 x)-500(1000 x)

  =1000x x2 500000 + 500x

  =- x2 + 1500x 500000(500≤x≤800)

  小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。

  作业 :略

  探究活动

  (1) 在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.

  (2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?

  答案:

  (1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即

  又x>0,y>0,14×5-(5+2)x≤14×3,

  所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).

  (2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则

  所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.

  (3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算?

   设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1=110x,应付给个体司机的费用为y2=800+10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x<8时,y1<y2;当x=8时,y1=y2,当x>8时,y1>y2.

  综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.

一次函数的图象和性质 篇3

  教学目标:

  1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。

  2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。

  3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。

  教学重点:

  1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。

  2、通过函数的性质及定义域范围求函数的最值。

  教学难点:

  从实际问题中抽象概括出运动变化的规律,建立函数关系式

  教学方法:讨论式教学

  教学过程:

  例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?

  (1)几分钟让学生认真读题,理解题意

  (2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。

  解法(一)列表分析:

  设从A校调到C校x台,则调到D校(12x)台,B校调到C校是(10x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。

  根据题意:

  y =40x+80(12- x)+ 30(10-x)+50(x-4)

  y =40x+960-80x+300-30x+50x-200

  =-20x+1060(4≤x≤10,且x是正整数)

  y =-20x+1060是减函数。

  ∴当x =10时,y有最小值ymin=860

  ∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。

  解法(二)列表分析

  设从A校调到D校有x台,则调到C校(12x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8x)台,总运费为y。

  y =40(12 x)+ 80x+ 30(x 2)+50(8-x)

  =480 40x+80x+30x 60+400 50x

  =20x +820(2≤x≤8,且x是正整数)

  y =20x +820是增函数

  ∴x=2时,y有最小值ymin=860

  调配方案同解法(一)

  解法(三)列表分析:

  解略

  解法(四)列表分析:

  解略

  第 1 2 页  

一次函数的图象和性质 篇4

  教学目标 

  1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。

  2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。

  3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。

  教学重点

  1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。

  2、通过函数的性质及定义域范围求函数的最值。

  教学难点 

  从实际问题中抽象概括出运动变化的规律,建立函数关系式

  教学方法:讨论式教学法

  教学过程 

  例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?

  (1)几分钟让学生认真读题,理解题意

  (2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。

  解法(一)列表分析:

  设从A校调到C校x台,则调到D校(12x)台,B校调到C校是(10x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。

  根据题意:

  y =40x+80(12- x)+ 30(10-x)+50(x-4)

  y =40x+960-80x+300-30x+50x-200

  =-20x+1060(4≤x≤10,且x是正整数)

  y =-20x+1060是减函数。

  ∴当x =10时,y有最小值ymin=860

  ∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。

  解法(二)列表分析

  设从A校调到D校有x台,则调到C校(12x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8x)台,总运费为y。

  y =40(12 x)+ 80x+ 30(x 2)+50(8-x)

  =480 40x+80x+30x 60+400 50x

  =20x +820(2≤x≤8,且x是正整数)

  y =20x +820是增函数

  ∴x=2时,y有最小值ymin=860

  调配方案同解法(一)

  解法(三)列表分析:

  解略

  解法(四)列表分析:

  解略

  例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y =kx+b的关系

  (1)根据图象,求一次函数y =kx+b的表达式

  (2)设公司获得的毛利润(毛利润=销售总价成本总价)为s元

  试用销售单价x表示毛利润s;

  解:如图所示

  直线过点(600,400),(700,300)

  ∴400 =600k+b

  300 =700k+b

  k =-1,b =1000

  ∴ y =- x + 1000(500≤x≤800)

  s =x(1000 x)-500(1000 x)

  =1000x x2 500000 + 500x

  =- x2 + 1500x 500000(500≤x≤800)

  小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。

  作业 :略

  探究活动

  (1) 在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.

  (2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?

  答案:

  (1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即

  又x>0,y>0,14×5-(5+2)x≤14×3,

  所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).

  (2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则

  所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.

  (3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算?

   设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1=110x,应付给个体司机的费用为y2=800+10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x<8时,y1<y2;当x=8时,y1=y2,当x>8时,y1>y2.

  综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.

一次函数的图象和性质 篇5

  教学目标 

  1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。

  2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。

  3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。

  教学重点

  1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。

  2、通过函数的性质及定义域范围求函数的最值。

  教学难点 

  从实际问题中抽象概括出运动变化的规律,建立函数关系式

  教学方法:讨论式教学法

  教学过程 

  例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?

  (1)几分钟让学生认真读题,理解题意

  (2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。

  解法(一)列表分析:

  设从A校调到C校x台,则调到D校(12x)台,B校调到C校是(10x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。

  根据题意:

  y =40x+80(12- x)+ 30(10-x)+50(x-4)

  y =40x+960-80x+300-30x+50x-200

  =-20x+1060(4≤x≤10,且x是正整数)

  y =-20x+1060是减函数。

  ∴当x =10时,y有最小值ymin=860

  ∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。

  解法(二)列表分析

  设从A校调到D校有x台,则调到C校(12x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8x)台,总运费为y。

  y =40(12 x)+ 80x+ 30(x 2)+50(8-x)

  =480 40x+80x+30x 60+400 50x

  =20x +820(2≤x≤8,且x是正整数)

  y =20x +820是增函数

  ∴x=2时,y有最小值ymin=860

  调配方案同解法(一)

  解法(三)列表分析:

  解略

  解法(四)列表分析:

  解略

  例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y =kx+b的关系

  (1)根据图象,求一次函数y =kx+b的表达式

  (2)设公司获得的毛利润(毛利润=销售总价成本总价)为s元

  试用销售单价x表示毛利润s;

  解:如图所示

  直线过点(600,400),(700,300)

  ∴400 =600k+b

  300 =700k+b

  k =-1,b =1000

  ∴ y =- x + 1000(500≤x≤800)

  s =x(1000 x)-500(1000 x)

  =1000x x2 500000 + 500x

  =- x2 + 1500x 500000(500≤x≤800)

  小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。

  作业 :略

  探究活动

  (1) 在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.

  (2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?

  答案:

  (1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即

  又x>0,y>0,14×5-(5+2)x≤14×3,

  所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).

  (2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则

  所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.

  (3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算?

   设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1=110x,应付给个体司机的费用为y2=800+10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x<8时,y1<y2;当x=8时,y1=y2,当x>8时,y1>y2.

  综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.

一次函数的图象和性质 篇6

  教学目标:

  1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。

  2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。

  3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。

  教学重点:

  1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。

  2、通过函数的性质及定义域范围求函数的最值。

  教学难点:

  从实际问题中抽象概括出运动变化的规律,建立函数关系式

  教学方法:讨论式教学

  教学过程:

  例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?

  (1)几分钟让学生认真读题,理解题意

  (2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。

  解法(一)列表分析:

  设从A校调到C校x台,则调到D校(12x)台,B校调到C校是(10x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。

  根据题意:

  y =40x+80(12- x)+ 30(10-x)+50(x-4)

  y =40x+960-80x+300-30x+50x-200

  =-20x+1060(4≤x≤10,且x是正整数)

  y =-20x+1060是减函数。

  ∴当x =10时,y有最小值ymin=860

  ∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。

  解法(二)列表分析

  设从A校调到D校有x台,则调到C校(12x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8x)台,总运费为y。

  y =40(12 x)+ 80x+ 30(x 2)+50(8-x)

  =480 40x+80x+30x 60+400 50x

  =20x +820(2≤x≤8,且x是正整数)

  y =20x +820是增函数

  ∴x=2时,y有最小值ymin=860

  调配方案同解法(一)

  解法(三)列表分析:

  解略

  解法(四)列表分析:

  解略

  例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y =kx+b的关系

  (1)根据图象,求一次函数y =kx+b的表达式

  (2)设公司获得的毛利润(毛利润=销售总价成本总价)为s元

  试用销售单价x表示毛利润s;

  解:如图所示

  直线过点(600,400),(700,300)

  ∴400 =600k+b

  300 =700k+b

  k =-1,b =1000

  ∴ y =- x + 1000(500≤x≤800)

  s =x(1000 x)-500(1000 x)

  =1000x x2 500000 + 500x

  =- x2 + 1500x 500000(500≤x≤800)

  小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。

  作业 :略

  探究活动

  (1) 在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.

  (2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?

  答案:

  (1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即

  又x>0,y>0,14×5-(5+2)x≤14×3,

  所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).

  (2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则

  所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.

  (3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算?

   设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1=110x,应付给个体司机的费用为y2=800+10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x<8时,y1<y2;当x=8时,y1=y2,当x>8时,y1>y2.

  综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.

一次函数的图象和性质 篇7

  一次函数的图象和性质

  一、目的要求

  1.使学生能画出正比例函数与一次函数的图象。

  2.结合图象,使学生理解正比例函数与一次函数的性质。

  3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

  二、内容分析

  1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

  2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

  三、教学过程 

  复习提问:

  1.什么是一次函数?什么是正比例函数?

  2.在同一直角坐标系中描点画出以下三个函数的图象:

  y=2x   y=2x-1   y=2x+1

  新课讲解:

  1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

  再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

  一般地,一次函数的图象是一条直线。

  前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

  先看两个正比例项数,

  y=0.5x

  与 y=-0.5x

  由这两个正比例函数的解析式不难看出,当x=0时,

  y=0

  即函数图象经过原点.(让学生想一想,为什么?)

  除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

  实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

  (1)先选取两点,通常选点(0,0)与点(1,k);

  (2)在坐标平面内描出点(0, o)与点(1,k);

  (3)过点(0,0)与点(1,k)做一条直线.

  这条直线就是正比例函数y=kx(k≠0)的图象.

  观察正比例函数  y=0.5x 的图象.

  这里,k=0.5>0.

  从图象上看, y随x的增大而增大.

  再观察正比例函数 y=-0.5x  的图象。

  这里,k=一0.5<0

  从图象上看, y随x的增大而减小

  实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.

  先看

  y=0.5x

  任取两对对应值. (x1,y1)与(x2,y2),

  如果x1>x2,由k=0.5>0,得

  0.5x1>0.5x2

  即   yl>y2

  这就是说,当x增大时,y也增大。

  类似地,可以说明的y=-0.5x  性质。

  从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

  一般地,正比例函数y=kx(k≠0)有下列性质:

  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小。

  2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

  y=kx+b(k,b是常数,k≠0)

  通常选取

  (o,b)与(-

  两点,

  对于例 l中的一次函效

  y=2x+1与y=-2x+1

  就分别选取

  (o,1)与(一0.5,2),

  还有

  (0,1)―与(0.5.0).

  在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b

  结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。

  对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

  课堂练习:

  教科书13.5节第一个练习第l―2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

  课堂小结:

  1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.

  2. 一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象.

  3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).

  四、课外作业 

  1.教科书习题13.5a组第l一3题.

  2.选作教科书习题13.5b组第1题.

  一次函数的图象和性质

  一、目的要求

  1.使学生能画出正比例函数与一次函数的图象。

  2.结合图象,使学生理解正比例函数与一次函数的性质。

  3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

  二、内容分析

  1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

  2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

  三、教学过程 

  复习提问:

  1.什么是一次函数?什么是正比例函数?

  2.在同一直角坐标系中描点画出以下三个函数的图象:

  y=2x   y=2x-1   y=2x+1

  新课讲解:

  1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

  再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

  一般地,一次函数的图象是一条直线。

  前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

  先看两个正比例项数,

  y=0.5x

  与 y=-0.5x

  由这两个正比例函数的解析式不难看出,当x=0时,

  y=0

  即函数图象经过原点.(让学生想一想,为什么?)

  除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

  实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

  (1)先选取两点,通常选点(0,0)与点(1,k);

  (2)在坐标平面内描出点(0, o)与点(1,k);

  (3)过点(0,0)与点(1,k)做一条直线.

  这条直线就是正比例函数y=kx(k≠0)的图象.

  观察正比例函数  y=0.5x 的图象.

  这里,k=0.5>0.

  从图象上看, y随x的增大而增大.

  再观察正比例函数 y=-0.5x  的图象。

  这里,k=一0.5<0

  从图象上看, y随x的增大而减小

  实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.

  先看

  y=0.5x

  任取两对对应值. (x1,y1)与(x2,y2),

  如果x1>x2,由k=0.5>0,得

  0.5x1>0.5x2

  即   yl>y2

  这就是说,当x增大时,y也增大。

  类似地,可以说明的y=-0.5x  性质。

  从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

  一般地,正比例函数y=kx(k≠0)有下列性质:

  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小。

  2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

  y=kx+b(k,b是常数,k≠0)

  通常选取

  (o,b)与(-

  两点,

  对于例 l中的一次函效

  y=2x+1与y=-2x+1

  就分别选取

  (o,1)与(一0.5,2),

  还有

  (0,1)―与(0.5.0).

  在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b

  结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。

  对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

  课堂练习:

  教科书13.5节第一个练习第l―2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

  课堂小结:

  1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.

  2. 一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象.

  3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).

  四、课外作业 

  1.教科书习题13.5a组第l一3题.

  2.选作教科书习题13.5b组第1题.

一次函数的图象和性质 篇8

  一次函数的图象和性质

  一、目的要求

  1.使学生能画出正比例函数与一次函数的图象。

  2.结合图象,使学生理解正比例函数与一次函数的性质。

  3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

  二、内容分析

  1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

  2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

  三、教学过程 

  复习提问:

  1.什么是一次函数?什么是正比例函数?

  2.在同一直角坐标系中描点画出以下三个函数的图象:

  y=2x   y=2x-1   y=2x+1

  新课讲解:

  1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

  再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

  一般地,一次函数的图象是一条直线。

  前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

  先看两个正比例项数,

  y=0.5x

  与 y=-0.5x

  由这两个正比例函数的解析式不难看出,当x=0时,

  y=0

  即函数图象经过原点.(让学生想一想,为什么?)

  除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

  实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

  (1)先选取两点,通常选点(0,0)与点(1,k);

  (2)在坐标平面内描出点(0, o)与点(1,k);

  (3)过点(0,0)与点(1,k)做一条直线.

  这条直线就是正比例函数y=kx(k≠0)的图象.

  观察正比例函数  y=0.5x 的图象.

  这里,k=0.5>0.

  从图象上看, y随x的增大而增大.

  再观察正比例函数 y=-0.5x  的图象。

  这里,k=一0.5<0

  从图象上看, y随x的增大而减小

  实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.

  先看

  y=0.5x

  任取两对对应值. (x1,y1)与(x2,y2),

  如果x1>x2,由k=0.5>0,得

  0.5x1>0.5x2

  即   yl>y2

  这就是说,当x增大时,y也增大。

  类似地,可以说明的y=-0.5x  性质。

  从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

  一般地,正比例函数y=kx(k≠0)有下列性质:

  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小。

  2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

  y=kx+b(k,b是常数,k≠0)

  通常选取

  (o,b)与(- 两点,

  对于例 l中的一次函效

  y=2x+1与y=-2x+1

  就分别选取

  (o,1)与(一0.5,2),

  还有

  (0,1)―与(0.5.0).

  在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b

  结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。

  对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

  课堂练习:

  教科书13.5节第一个练习第l―2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

  课堂小结:

  1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.

  2. 一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象.

  3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).

  四、课外作业 

  1.教科书习题13.5a组第l一3题.

221381
领取福利

微信扫码领取福利

一次函数的图象和性质(精选8篇)

微信扫码分享