欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 圆柱的体积教学设计(通用12篇)

圆柱的体积教学设计(通用12篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

圆柱的体积教学设计(通用12篇)

圆柱的体积教学设计 篇1

  教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:圆柱体积计算公式的推导过程

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积.

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。) 

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,推导公式。

  (1)、思考你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:要想求出一个圆柱的体积,需要知道什么条件?  

  (8)、学生自学第17页例4上面的一段话:用字母表示公式。

  学生反馈自学情况: 

  v=sh                                                                                                                                                                                                   (设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)     

  三、巩固发展

  1、课件出示例5,学生独立完成。

  指名说说这样列式的依据是什么。

  (设计意图:使学生注意解题格式,注意体积的单位为三次方)

  2、巩固反馈

  填表(单位:厘米)

  底面积  高 体积

  6      3

  0.5    8

  8      2

  (设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知识)

  3、完成第9页的“试一试”和练一练”中的两道题。

  (“练一练”只列式,不计算)

  集体订正,说一说圆柱体的体积还可以怎样算?

  (设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

  4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

  (设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决问题,切实体验到数学就存在于自己的身边。)

  5、拓展练习

  (1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

  (2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

  (设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)              

  四、全课小结:谈谈这节课你有哪些收获。

  板书设计:

  圆柱的体积

  长方体的体积=底面积高

  圆柱的体积  =底面积高

  v   =   s    h

  或v=πr²h

  设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到最大化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:

  1、合作探究学习为主要的学习方式。

  2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。

  3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。

  教具准备:圆柱的体积公式演示课件  体积不同的圆柱体  直尺  细绳  计算器。

圆柱的体积教学设计 篇2

  【教材简析】:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

  【教学内容】:

  p19-20页的内容和例题,完成“做一做”及练习三第1~4题。

  【教学目标】:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公 式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  【教学重点】:掌握圆柱体积的计算公式。

  【教学难点】:圆柱体积的计算公式的推导。

  【教学过程】:

  第一课时          本册总课时:12课时

  一、复习

  1、长方体的体积公式是什么?(长方体的体积=长宽高,长方体和正方体体积的统一公式“底面积高”,即长方体的体积=底面积高)

  2、什么叫做物体的体积?你会计算下面那些图形的体积?

  3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  (1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)

  (2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)

  (3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)

  (3)通过观察,使学生明确:

  长方体的底面积等于圆柱的底面积,

  长方体的高就是圆柱的高。

  长方体的体积=底面积高,

  所以圆柱的体积=底面积高,

  v =  s   h

  圆柱的体积计算公式是:

  v=s h

  2、课堂练习:

  (1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)让学生解答和板算,最后师生共同完成.

  解:v=sh

  =7590

  =675(立方厘米)

  答:它的体积是675立方厘米。

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的vπ r²h

  4.作业:

圆柱的体积教学设计 篇3

  教学内容:

  青教版九年义务教育六年制小学数学六年级下册第23―28页。

  教材简析:

  该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。

  教学目标:

  1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。

  2、经历探索圆柱计算公式的过程,进一步发展空间观念。

  3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

  教学重点和难点:

  圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。

  教具准备:

  多媒体课件、圆柱体积学具、沙子等。

  第一课时

  教学过程:

  一、创设情境,激趣引入。

  谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)

  课件出示:两个圆柱体冰淇淋。

  谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?

  (生猜测)这节课我们就来研究圆柱的体积。(板书课题――圆柱体的体积。)

  设计意图:

  从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。

  二、回忆旧知,实现迁移。

  谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?

  (学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

  设计意图:

  通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。

  三、利用素材,探索新知。

  ㈠交流猜测

  谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?

  生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?

  师谈话:你的想法很好,怎样转化呢?

  生讨论,交流。

  生汇报,可能会有以下几种想法:

  1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。

  2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。

  3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。

  谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。

  ㈡实验验证

  学生动手进行实验。

  谈话:请每个小组拿出学具,按照刚才第3小组的'方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

  学生合作操作,集体研究、讨论、记录。

  设计意图本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。

  四、分析关系,总结公式

  1、全班交流

  谈话:哪个小组愿意展示一下你们小组的研究结果?

  引导学生发现:

  转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。

  2、分析关系

  引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

  3、总结公式。

  谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。

  (课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)

  谈话:你发现了什么?

  引导观察:分的份数越多,拼成的图形就越接近长方体。

  (课件动态演示:圆柱的高――长方体的高,圆柱的底面积――长方体的底面积。)

  谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。

  根据学生的回答教师板书:

  长方体的体积 = 底面积 × 高

  圆柱的体积 = 底面积 × 高

  谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh

  设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点――转化法,便于学生顺利推导出圆柱体积的计算公式。

  五、利用公式,解决问题。

  自主练习第1题、第2题、第3题

  设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。

  六、课堂总结

圆柱的体积教学设计 篇4

  教材简析:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

  教学目的:

  1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

  2、会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

  3、引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的'能力

  4、借助实物演示,培养学生抽象、概括的思维能力。

  教具:圆柱的体积公式演示教具,多媒体课件。

  教学过程:

  一、情景引入

  1、出示圆柱形水杯。

  (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。

  2、创设问题情景。(课件显示)

  如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的'方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

  今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。)

  二、新课教学:

  设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。

  三、巩固反馈

  1、求下面圆柱体的体积。(单位:厘米)

  同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

  练习:(回到想一想中)圆柱形水杯的底面直径是10cm,高是15cm、已知水杯中水的体积是整个水杯体积的2/3计算水杯中水的体积?

  (设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,切实体验到数学就存在于自己的身边。)

  四、拓展练习

  1、一个长方形的纸片长是6分米,宽4分米、用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由、(结果保留π)

  2、一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、

  (设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)

  五、课堂小结:

  1、谈谈这节课你有哪些收获。

  2、解题时需要注意那些方面。

  (设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。)

  六、布置作业

  1、A册习题2、7

  2、拓展练习2题

  教学反思:

  本节课的教学体现了:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;三、正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果,不足处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。

圆柱的体积教学设计 篇5

  教学目标:

  1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。

  2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。

  3、培养学生分析问题,解决问题及实践应用能力。

  教学重点:

  掌握有关圆柱的表面积和体积的计算,会综合运用

  教学难点:

  运用所学的`知识解决生活中的实际问题。

  学习过程:

  一、复习回顾

  1、下列图形的面积公式是什么?

  长方形的面积=

  正方形的面积=

  平行四边形的面积=

  梯形的面积=

  圆的面积=

  2、长方体的表面积=

  圆柱的表面积=

  二、探究圆柱的体积公式:

  圆柱的体积= 。

  如果圆柱的体积用V表示,底面积用S表示,高用h表示,则圆柱的体积公式用字母表示为。

  如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。

  三、例题学习:

  把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?

  例2、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?

  四、课堂练习

  1、求下面圆柱的体积

  1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米

  3)底面直径5分米,高6分米

  2、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?

圆柱的体积教学设计 篇6

  【学习目标】

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  【学习过程】

  一、板书课题

  师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

  二、出示目标

  本节课我们的目标是:(出示)

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  三、出示自学指导

  认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

  1、圆柱的体积公式是如何推导出来的?

  2、圆柱的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能做对检测题!

  师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

  四、先学

  (一)看书

  学生认真看书,教师巡视,督促人人都在认真地看书。

  (二)检测(找两名学生板演,其余生写在练习本上)

  第20页“做一做”和第21页第5题。

  要求:

  1、认真观察,正确书写,每一步都要写出来。

  2、写完的同学认真检查。

  五、后教

  (一)更正

  师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

  (二)讨论

  1、看第1题:认为算式列对的请举手?

  【圆柱的体积=底面积×高】

  2、看第2题:认为算式列对的举手?你是怎么思考的?

  3、看计算过程和结果,认为对的举手?

  4、评正确率、板书,并让学生同桌对改。

  今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

  六、补充练习:

  1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

  2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积。

  3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是厘米,体积是立方厘米。、

  下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

  七、当堂训练(课本练习三,第21页)

  作业:第3、4、7、8题写作业本上

  练习:第1题写书上,第2、6、9、10题写练习本上

  八、板书设计:略。

  课后反思:

  本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的`知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱的体积教学设计 篇7

  教学过程:

  一、情境激趣  导入新课

  1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)

  二、自主探究, 学习新知

  (一)设疑

  1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

  2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?

  3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)

  师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式

  (二)猜想

  1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?

  2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?

  (三)验证

  1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)

  2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)

  3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。

  4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

  5、通过上面的观察小组讨论:

  (1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

  (2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?

  (3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?

  (4) 你认为圆柱的体积可以怎样计算?

  (生汇报交流,师根据学生讲述适时板书。)

  小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积高,所以圆柱体积也等于底面积高,用字母表示是v=sh。

  6、同桌相互说说圆柱体积的推导过程。

  7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)

  8、求圆柱体积要具备什么条件?

  9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)

  小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。

  10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)

  11、练一练:列式计算求下列各圆柱体的体积。

  (1)底面半径2cm,高5cm。

  (2)底面直径6dm,高1m。

  (3)底面周长6.28m,高4m。

  三、练习巩固  拓展提升

  1、判断正误:

  (1)等底等高的圆柱体和长方体体积相等。………………(  )

  (2)一个圆柱的底面积是10cm2,高是5m,它的体积是105=50cm3。.....(  )

  (3)圆柱的底面积越大,它的体积就越大。............(   )

  (4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......(   )

  2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米?

  3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?

  四、全课总结  自我评价

  通过这节课的学习你有什么感受和收获?

  教学目标:

  1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。

  2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。

  教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。

  教学准点:掌握圆柱体积公式的推导过程。

  教学准备:圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。

圆柱的体积教学设计 篇8

  评价样题:

  学习流程:

  一、创设现实情境,增强探究欲望。

  1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法?

  如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)

  看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、亲历建构过程,提高探索能力。

  1、提出问题,大胆猜想

  你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?

  (鼓励学生大胆猜测,说出自己的想法)

  2、回顾旧知,帮助迁移

  同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的吗?

  (演示课件:圆转化成长方形)

  3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

  4、小组合作,验证猜想

  下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。

  (出示合作提纲)小组长做好分工,并完成记录表。

  活动记录表

  思考:

  1、圆柱体可以转化成哪种立体图形?

  2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?

  3、怎样用简捷的形式表示你推导出来的公式呢?

  活动过程:

  1、我们用方法,把圆柱体转化成了体。

  2、在这个转化的过程中,变了,没有变。

  3、通过观察比较,我们发现:把一个圆柱体的底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的底面积等于圆柱体的,高就是圆柱体的。因为,长方体体积=,所以,圆柱体的体积计算公式是v=。

  5、全班交流,展示评价。

  评价交流中,借助评价样题。同时课件演示切拼的'过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 6、根据学生的发现引导学生推导出:

  圆柱的体积=底面积×高,

  用字母表示v = sh。

  7、反馈练习。

  (1)要求圆柱体积,必须知道哪些条件?

  (2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。

  圆柱的体积教学设计 相关内容:用转化的策略解决分数问题“长方体和正方体的表面积”的教学实录小学数学《倒数的认识》教案北师大版6年级数学第11册第1单元《圆的认识》教案1、分数四则混合运算《按比例分配》课后反思百分数的意义和读写法反思百分数(三)用百分数解决问题查看更多>>小学六年级数学教案

圆柱的体积教学设计 篇9

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (学生互相讨论后汇报,教师设疑)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

  4、确定方法,探究实验,验证体积公式。

  (1)、首先要求学生利用实验工具,自主商讨确定研究方法。

  (2)、学生通过讨论交流确定了两种验证方案。

  方案一:将圆柱c放入水中,验证圆柱c的体积。

  方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

  (3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

  (4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

  (7)、小结:

  要想求出一个圆柱的体积,需要知道什么条件? 

  (8)、学生自学第8页例4上面的一段话:用字母表示公式。

  学生反馈自学情况: 

  v=sh  

  三、巩固发展 

  1、课件出示例4,学生独立完成。

  指名说说这样列式的依据是什么。

  2、巩固反馈

  3、完成第9页的“试一试”和练一练”中的两道题。

  (“练一练”只列式,不计算)

  集体订正,说一说圆柱体的体积还可以怎样算?

  4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

  5、拓展练习

  (1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

  (2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?               

  四、全课小结:

  谈谈这节课你有哪些收获。

  教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:圆柱体积计算公式的推导过程

圆柱的体积教学设计 篇10

  教学内容:教材第25、26页例4、“试一试”、“练一练”和练习七的1、2题

  教学目标:

  1、进一步深入地引导学生去了解圆柱,让学生掌握圆柱的体积计算公式,并能解决实际问题。

  2、培养学生自学能力,动手能力,观察分析和归纳知识的能力,让学生理解“转化”的方法。

  教学重点:理解和掌握圆柱体积的计算公式。

  教学难点:圆柱体积计算公式的推导。

  教学准备:圆柱体模具。

  教学过程:

  预习作业检测

  学习计算圆的`面积时,是怎样得出圆面积的计算公式的?

  求下面各圆的面积

  R=1厘米求Sd=4分米求Sc=6.28米求S

  长方体与正方体的体积都可以用什么公式来表示?

  圆柱底面积/平方米高/米体积/立方米

  0.61.2

  0.253

  合作探究

  你们是怎么知道圆柱的体积=底面积×高的呢?生答预习得知。

  课本上是怎么把圆柱体和长方体联系在一起的呢?

  生答,同时师相机用课件展示圆柱体和长方体相互转化的画面。

  用切拼法把圆柱体切成16等份、32等份、64等份,由此得出结论:

  ○1等份越多,拼成的物体越接近于长方体。

  ○2长方体与圆柱体等底等高。

  ○3长方体体积=圆柱体体积

  ○4圆柱的体积=底面积×高(V=sh)。

  根据刚才的结论完成下面的题目:

  ○1一根圆柱形钢材,底面积是20平方厘米,高是1.5米,

  它的体积是多少?生独立完成后,师有选择的找几位学生

  的作业进行投影展示,全班交流评价。

  ○2一个圆柱形状的零件,底面半径5厘米,高8厘米,这

  个圆柱的体积是多少立方厘米?

  引导学生读题,思考。指名说出自己想的过程。生独立解

  答,展示、交流、评价。

  当堂达标检测

  1、“练一练”第1题。

  2、练习七第2题。

  3、“练一练”第2题。

  教学反思:

圆柱的体积教学设计 篇11

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。) 

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

  (设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,验证体积公式。

  (1)、首先要求学生利用实验工具,自主商讨确定研究方法。

  (2)、学生通过讨论交流确定了两种验证方案。

  方案一:将圆柱c放入水中,验证圆柱c的体积。

  方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

  (3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)

  (4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:

  要想求出一个圆柱的体积,需要知道什么条件? 

  (8)、学生自学第8页例4上面的一段话:用字母表示公式。

  学生反馈自学情况: 

  v=sh                                                                                                                                                                                                     ( 设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)     

圆柱的体积教学设计 篇12

  教学目标   

  1.经历探究和推导圆柱的体积公式的过程。

  2.知道并能记住圆柱的体积公式,并能运用公式进行计算。

  3.在学生自主探究圆柱的体积公式的过程中,让学生体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。

  4.激发学生的学习兴趣,让学生体验成功的快乐。

  5.培养学生的转化思想,渗透辩证法和极限的思想。

  学具准备:用3──4层吹塑纸做成的圆柱体。

  教学过程

  一、启动导入

  师:告诉你圆的半径,你会求圆的面积吗?

  1.求下面各题中圆的面积:

  (1)半径2分米。

  师:如果告诉你圆的直径,你又如何求圆的面积呢?

  (2)直径6厘米。

  师:如果告诉你圆的周长,你又如何求圆的面积呢?

  (3)周长12.56米。

  [设计意图:这样设计的目的为学习了圆柱的体积公式=底面积高以后,已知圆柱的底面半径和高、圆柱的底面直径和高、圆柱的底面周长和高求圆柱的体积做知识上的铺垫。]

  师:回忆一下圆面积的计算公式是如何推导出来的?

  [学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。]

  师:(结合课件演示)我个看,这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长,相当于圆的半周长,长方形的宽就牙当于圆的半径。所以用半周长半径就可以求出圆的面积,半周长就等于πr,半径是r,所以圆的面积是πr2。

  [设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。]

  3.什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?

  [设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。]

  板书:长方体的体积=底面积高.

  [设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。]

  出示:拿四层吹塑纸做成的一个一个大小相同的一摞圆柱。

  师:这是什么?(圆柱体)

  师:把这个圆柱体拿平行于底面的平面切成几份后,每一份还是圆柱体吗?(是)

  [设计意图:平时人们讲圆柱的体积计算时由于缺乏学具操作,学生大多通过复习圆的面积公式的推导过程以后来用自学的方法学习圆柱的体积计算。当学生认可这个圆柱体以后就可以通过小组合作操作的形式来完成对圆柱体积公式的探究,从而增加学生的成功体验过程。]

  圆柱体也有体积,说一说什么是圆柱的体积?

  板书:圆柱体所占空间的大小叫做圆柱的体积。

  师:这节课,我们就来学习圆柱的体积.(板书课题:圆柱的体积)

  二、探索体验

  1.求圆柱体容器中水的体积

  出示长方体容器:问,这是什么?

  [学情预设:学生可能说出长方体容器。]

  师:怎么求长方体容器中水的体积呢?

  [学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。]

  师:如果换成圆柱体容器又如何求其中水的体积呢?

  [学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。](演示:把圆柱体容器中的水倒入长方体容器)

  2.橡皮泥圆柱体的体积

  (出示橡皮泥做成的圆柱体)

  师:这是一个什么样的立体图形?

  师:它是用橡皮泥做成的。你能想办法求出它的体积吗?

  [学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。]

  3.常用圆柱的体积.

  课件出示太钢的炼钢炉的照片。

  师:太钢的炼钢炉中间部分是一个很大的圆柱体,你又如何求出它的体积呢?

  [学情预设:学生处于愤悱状态,想说又不知怎么说。]

  [设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示太钢的炼钢炉的照片后,由于前面的物体是可以变形的,而太钢的炼钢炉是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求太钢圆柱体炼钢炉的体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。]

  师:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。

  4.探究普遍规律

  师:圆我们可以通过分割、拼合转化成已学过面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行操作、讨论:

  课件出示操作讨论提纲:

  (1)圆柱体可以转化为什么样的立体图形?

  (2)转化成的立体图形是不是平时学习过的标准的立体图形?怎样才能成为平时学习过的标准的立体图形?

  (3)转化后的体积与圆柱的体积大小是否有变化?

  (4)根据转化后的形体与与转化前圆柱体各部分间的对应关系,推导出圆柱的体积。

  学生讨论,教师参与小组讨论、点拨。

  学生汇报、演示。

  [学情预设:学生可能是把它转化成平行六面体,教师要及时帮助学生用透明胶带纸粘贴在一起。]

  师:下面哪个小组来先进行汇报。

  [学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱无限分割才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,出没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积高,所以,圆柱体的体积=底面积高。]

  师:谁还有补充?(学生补充讲解)

  拿两个相同的圆柱体体积演示模型演示,边演示边讲解。

  师:同学们看,老师这里有两个圆柱体,它们的底相同,它们的高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成长方体。长方体是近似的长方体,如果我把它元限分割就可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。

  结合课件演示讲解。

  师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积高,所以,圆柱体的体积=底面积高。

  师:如果圆柱的体积用v来表示,底面积用s表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:v=sh)

221381
领取福利

微信扫码领取福利

圆柱的体积教学设计(通用12篇)

微信扫码分享