欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 五年级上册《因数和倍数》集体备课教案(通用14篇)

五年级上册《因数和倍数》集体备课教案(通用14篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

五年级上册《因数和倍数》集体备课教案(通用14篇)

五年级上册《因数和倍数》集体备课教案 篇1

  教材分析:

  以乘、除法知识拓展方式,引入对“因数与倍数”知识的学习。有利于沟通新旧知识之间的联系,分散难点,便于学生理解和掌握知识。

  教学目标:

  ①在具体的情境中,借助乘法算式认识因数和倍数。

  ②掌握求一个数的因数和倍数的方法,知道一个数的因数及倍数的特点。

  重点难点突破:

  为了突出重点、突破难点,特设计以下三个环节进行教学:

  ①   以学生的贴画为素材,通过不同的贴法引出不同的乘法算式,以乘法算式引出因数

  和倍数的意义。

  ②引导学生自主找一个数的因数,以此加深对因数的理解。

  ③引导学生自主找一个数的倍数,以此加深对倍数的理解。

  组内教师讨论要点:

  ①找一个数的因数时,一定要放手,且给学生足够的时间让他们去同位之间、小组内交流,如何能快速且没有遗漏的找全。

  ②及时的练习巩固也是很有必要的,在多个练习的基础之上让学生发现一个数因数的特点。

  ③找一个数的因数也反映出学生的口算水平的高低。

  ④找一个数的倍数时,以找2、3、5的倍数为主,让学生发现一个数倍数的特征。

五年级上册《因数和倍数》集体备课教案 篇2

  给一片空间 换一串硕果

  【教学内容】人教版数学五年级下册p12一14,练习二。

  【教学过程】

  一、操作空间,初步感知。

  1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

  2.学生动手操作,并与同桌交流摆法。

  3.请用算式表达你的摆法。

  汇报:112=12,26=12,34=12。

  【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

  二、探索空间,理解新知。

  1.理解因数和倍数。

  (1)观察34=12,你能从数学的角度说说它们之间的关系吗?

  师根据学生的表达完成以下板书:

  3是12的因数

  12是3的倍数

  4是12的因数

  12是4的倍数

  3和4是12的因数

  12是3和4的倍数

  (2)用因数和倍数说说算式l12=12,26=12的关系。

  (3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括o)。

  2.求一个数的因数。

  (1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。

  学生汇报。

  师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

  出示要求:

  ①可独立完成,也可同桌合作。

  ②可借助刚才找出12的所有因数的方法。

  ③写出36的所有因数。

  ④想一想,怎样找才能保证既不重复,又不遗漏。

  教师巡视,展示学生几种答案。

  生1:1,2,3,4,9,12,36。

  生2:1,36,2,18,3,12,4,9,6。

  生3:1,4,2,36,9,3,6,12,18。

  (2)比较喜欢哪一种答案?为什么?

  用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

  师:有序思考更能准确找出一个数的所有因数。

  完成板书:描述式、集合式。

  (3)30的因数有哪些?

  【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

  3.求一个数的倍数。

  (1)3的倍数有:——,怎样有序地找,有多少个?

  找一个数的倍数,用l,2,3,4……分别乘这个数。

  (2)练一练:6的倍数有:

  ,40以内6的倍数有:一o

  【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

五年级上册《因数和倍数》集体备课教案 篇3

  教学内容:

  义务教育课程标准小学数学五年级下册第二章《因数和倍数》第1节例1(教材第13页)及练习二的第2题,第四题的前部分。

  教材分析:

  本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。

  教学目标:

  1、应用尝试教学法鼓励学生自主尝试探究求一个数的因数的方法及规律特点,并能熟练找全一个数的因数;

  2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。

  教学重点:

  探究求一个数的因数的方法及规律特点。

  教学难点:

  用求一个数的因数的方法熟练找全一个数的因数。

  教具准备:

  投影仪、小黑板、卡片

  教学课时:一课时

  教学设想:

  运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。

  教学过程:

  一、复习旧知

  师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?

  生:(预设)可以!

  师:出示小黑板。

  1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。

  21和7  2×7=14  30÷6=5

  2、判断。

  (1)12是倍数,2是因数。 ( )

  (2)1是14的因数,14是1的倍数。 ( )

  (3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。( )

  教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……

  二、新课教学

  过程一:尝试训练。

  (一)出示问题

  师:同学们,老师有一个新问题,想请大家帮助解决,行吗?

  生:行!(预设)

  尝试题:14的因数有哪几个?

  (二)学生解决问题,教师巡视并根据实际适时辅导学困生。

  (三)信息反馈。

  板书:

  1×14

  14 2×7

  14÷2

  14的因数有:1,2,7,14

  过程二:自学课本(P13例1)。

  (一)学生自学例1。

  教师提出自学要求(投影):

  1、18有哪些因数?

  2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。

  3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。

  (二)信息反馈

  1、反馈自学要求情况;

  板书:

  1×18

  18 2×9

  3×6

  18的因数有1,2,3,6,9,18。

  还可以这样表示: 18的因数

  2、知识对比,探索发现规律。

  (1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:

  投影出示问题:

  思考一:你用什么方法找出?

  (2)学生思考,教师适时引导。

  (3)同桌交流思考结果。

  (4)师生互动。总结方法、点出课题。

  求一个数的因数的方法:用乘法计算或除法计算(整除)

  过程三:尝试练习

  (一)用小黑板出示练习题

  1、找出30的因数有哪些?36的因数有哪些?

  2、结合14、18、30、36的因数个数,请你谈谈一个数的因数有什么特点?〖提示:一个数的最小因数是(  ),的因数是(  )。〗

  (二)信息反馈:师生互动总结特点。

  板书:

  一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。

  三、课堂作业

  练习二第2题和第4题前半部分。

  四、课堂延伸

  猜一猜:(卡片)只有一个因数的数是谁?

  五、课堂小结

  师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?

  生:……

  板书设计:

  求一个数的因数的方法

  1×14

  14 2×7              方法:用乘法计算或除法计算(整除)

  14÷2

  14的因数有:1,2,7,14

  1×18

  18 2×9

  3×6

  18的因数有:1,2,3,6,9,18   特点:一个数的因数的个数是有限的。

  还可以表示为:

  它的最小因数是1,的因数是它本身。

五年级上册《因数和倍数》集体备课教案 篇4

  这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

  一、尊重教材,引导学生实现从形象向抽象的飞跃。

  教材中首先引导学生理解数与数之间的关系,进而用乘法算式把不同的列法表示出来,再根据乘法算式教学倍数和因数的意义。这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

  这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,

  二、细化过程,让学生在充分交流中感悟理解倍数和因数的意义。

  倍数和因数的意义是本单元的重要知识,其他内容的教学都以此为基础。在学生得出乘法算式后,首先引导学生观察3×4=12这道算式,边指着算式边先介绍“12是3的倍数”,然后启发学生“看着算式你还能想到什么?”很多学生已经领会12也是4的倍数,指名说后,再强化一下让学生连起来说说谁是谁的倍数。接着教学“3是12的因数”,再启发“这时你又能想到什么?”学生很容易联想到“4也是12的因数”,而且学生的学习兴趣浓厚、求知欲强。这时再让学生完整的说一说谁是谁的倍数,谁是谁的因数,已经“水到渠成”。在初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系之后,接着练一练让学生根据2×6=12先同桌互相说说哪个数是哪个数的倍数(或因数),在全班交流。最后根据1×12=12先指名说一说哪个数是哪个数的倍数(或因数),再让学生轻声地说说有点特别的两句。

  整个过程处理细致、层次清晰、有扶有放,生生交流、师生交流充分,反馈及时、兼顾学困生,让学生在迁移中理解倍数和因数的意义。

  三、由点及面,巧架平台,让学生在师生互动中建立完整的数学模型。

  找一个数的倍数或因数,既能巩固倍数和因数的意义,也为研究倍数的特征及意义作准备。探索找一个数的倍数或因数的方法时,重点是帮助学生建立相应的数学模型。

  探索求一个数因数的方法是本课的难点,例题直接安排找24的因数更是困难。教学中我还是利用3×4=12做铺垫,引导学生先找一找12的因数,初步感知了找因数的方法。然后层层推进,先让学生想一道算式找24的因数,引出根据除法找因数的方法,再让学生按除法通过自主探究找出24的所有因数,接着组织学生比较、讨论、优化提升出找一个数的因数的方法。

  教学4的倍数时,学生在4×4=16的铺垫下,很容易找到一个或几个4的倍数,但是想要“一个不漏且有序的找全,并体会出4的倍数的个数是无限的”却很难。如何引导学生建构完整的倍数的数学模型呢?我遵循学生的认知规律,然后引导学生按从小到大的顺序整理,接着向两头延伸:有比4更小的吗?接着4×2=8,4×3=12,4×4=16,…像这样说下去说得完吗?4的倍数的特点逐步在学生的脑海中得以完善、合理建构。

  这样搭建了有效的平台、形成了师生互动生成的过程,学生经历了无序、不完整逐步由点及面向有序、完整的思维迈进,有效的建构了数学模型。

五年级上册《因数和倍数》集体备课教案 篇5

  一、教材分析。

  倍数和因数一课是苏教版数学第八册中的内容。这一内容是在学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数,较为系统地掌握了十进制记数法,同时也基本完成了整数四则运算基础上进行的教学,主要是要使学生初步认识倍数和因数的意义,学会在1-100的自然数中找10以内某个数的所有倍数和100以内某个数的所有因数的方法。这是学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算的基础,对以后的学习起着重要的作用。

  二、教学目标及重点和难点。

  1、知识与技能目标:使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,并能找一个数的倍数和因数。

  2、过程与方法目标:引导学生自主探究找一个数倍数和因数的方法,体会数学知识之间的内在联系,提高数学思考的水平。

  3、情感与态度目标:在学习活动中激发学生学习数学的兴趣和自信心。

  4、重点:理解因数和倍数的含义,知道它们呢的关系是相互依存的。

  5、难点:探索并掌握求一个数的倍数和因数的方法。

  三、教学设计

  (一)认识倍数和因数

  认识倍数和因数时,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,引导学生在操作中得到乘积相同的不同乘法算式,并进一步引出倍数和因数的概念。倍数和因数是指两个数之间的关系,不能单独说某数倍数或因数,这一点学生往往搞不清,为了使学生明白倍数和因数是一种相互依存的关系,我举了生活中的兄弟关系,母女关系的例子帮助学生理解,让学生感受到数学与生活的联系,同时也让学生明白,用数学知识解决生活问题是学习数学的真正目的。

  (二)探索求一个数的倍数的方法

  从例1中得出:12是3的倍数,又把学生举的一个3的倍数的例子有目的地写在黑板上结合起来看,引导学生说出3的倍数还有哪些。学生在举例子时说出来的数是无序的,这时教师引导学生思考怎样才能按从小到大的顺序有条理地找出3的倍数,促使学生去关注思想方法,并在学生讨论交流中感受有序的思想方法。

  在学生掌握方法的基础上,采用比赛的形式要求学生有序地写出2、5的倍数,然后在整体观察2、3、5倍数的基础上通过学生讨论,一个数倍数的特点。培养了学生观察、比较、归纳概念的能力。

  (三)探索求一个数的因数的方法

  从例中看出4、3、6、2、12、1都是12的因数,那我们可以怎样找一个数的因数呢?先让学生独自找36的因数,再指名几个学生说说是怎么找的,通过几位学生找的方法的比较得出较合理的方法。接着又找了15、16的因数,归纳出一个数因数的特点。

  (四)全课小结

  (五)巩固练习

  为了提高学生学习兴趣,巩固所学知识,我又补充了两个练习:

  1、判断题目的是强化学生对基础知识的掌握。

  2、出示几张数字卡片。从中选择只有倍数和因数关系,比谁选择得多。

五年级上册《因数和倍数》集体备课教案 篇6

  尊敬的各位领导、老师大家上午好:我们团队所执教的是《因数和倍数》。

  一、说教材:

  《因数和倍数》是小学人教版课程标准实验教材五年级下册第二单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识自然数的基础上,探究其性质。其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往教材不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模式na=b直接给出因数与位数的概念。这节课是因数与倍数的概念的引入,为本单元最后的内容,以及第四单元的最大公因数,最小公倍数提供了必须且重要的铺垫。

  根据教材所处的地位和前后关系,确定了以下目标:

  知识技能目标:

  掌握因数倍数的概念,理解因数与倍数的意义,掌握找一个数因数与倍数的方法。

  情感,价值目标:培养学生合作、观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心和求知欲。

  教学重点和难点:理解倍数和因数的意义,掌握找出一个数因数和倍数的方法。

  二、学情分析:

  学生在平时学习中缺少主动性,一部分学生怕困难,缺乏独立思考的习惯,同时考虑问题也不够全面。在本堂课的教学中,主要调动学生学习的积极性,提高学生课堂学习的参与性,体验成功的乐趣,通过学生的亲自探索和合作交流,来达到学习知识,掌握所学知识的目的。同时感受数学中的奥妙。

  三、教法与学法指导

  当今社会,人类的语言离不开素质教育,而实施素质教育必须“以学生为本”课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。

  1、遵循学生主体,老师主导,自主探究,合作交流为主线的理念,利用学生对乘法的运算理解概念。

  2、小组合作讨论法。以学生讨论,交流,互相评价,促成学生对找一个数的因数和倍数的方法进行优化处理,提升。巩固学生方法表达的完整性,有效性,避免学生只掌握方法的理解,而不能全面的正确的表达。

  四,教学过程

  1、揭示主题

  老师直接揭示主题,大胆创新,打破了传统的为了导入而导入的教学模式。为学生的自主合作学习提供了开放的空间。

  2、合作交流,理解因数,倍数的概念及其意义。

  教师出示前置性作业,小组内交流,汇报学习成果,教师适时点拨,真正把课堂还给学生,也充分体现了教师的主导作用和学生的主体地位。使学生在交流中培养了合作学习的意识,对因数和倍数的概念有了初步的认识,对它们之间的联系也有了更好的理解。

  3、学习求一个数的因数和倍数的方法

  一个数的因数和倍数是本节课中技能目标中很重要的一部分。使学生在已有的经验基础上,独立的列举一个数的因数,在小组合作交流中得出。找一个数的因数和倍数的方法。真正地把主动权交给学生,教师通过引导,使学生加深理解,化解难点。

  4、引导学生分析,比较归纳寻找共性,找出不同,得出一个数的因数,使学生学会有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。教师的教学水到渠成,学生的学习则是山重水复疑无路,柳暗花明又一村。

  5、引导学生置疑,集体交流,化解疑问

  便于学生对本课所学知识更好的消化理解。

  三、练习

  练习题设计形式多样,有梯度。既注重基础,又有所提高,从而真正实现了课堂教学的有效性。

五年级上册《因数和倍数》集体备课教案 篇7

  教学目标:

  1、同学掌握找一个数的因数,倍数的方法;

  2、同学能了解一个数的因数是有限的,倍数是无限的;

  3、能熟练地找一个数的因数和倍数;

  4、培养同学的观察能力。

  教学重点:掌握找一个数的因数和倍数的方法。

  教学难点:能熟练地找一个数的因数和倍数。

  教学过程:

  一、引入新课。

  1、出示主题图,让同学各列一道乘法算式。

  2、师:看你能不能读懂下面的算式?

  出示:因为2×6=12

  所以2是12的因数,6也是12的因数;

  12是2的倍数,12也是6的倍数。

  3、师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的关系了?

  那你还能找出12的其他因数吗?

  4、你能不能写一个算式来考考同桌?同学写算式。

  师:谁来出一个算式考考全班同学?

  5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

  齐读p12的注意。

  二、新授:

  (一)找因数:

  1、出示例1:18的因数有哪几个?

  从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

  同学尝试完成:汇报

  (18的因数有: 1,2,3,6,9,18)

  师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2、用这样的方法,请你再找一找36的因数有那些?

  汇报36的因数有: 1,2,3,4,6,9,12,18,36

  师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。

  3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

  4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

  18的因数

  小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的`因数找起,一直找到它的自身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1、我们一起找到了18的因数,那2的倍数你能找出来吗?

  汇报:2、4、6、8、10、16、……

  师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

  那么2的倍数最小是几?最大的你能找到吗?

  2、让同学完成做一做1、2小题:找3和5的倍数。

  汇报 3的倍数有:3,6,9,12

  师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……倍)

  5的倍数有:5,10,15,20,……

  师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

  2的倍数 3的倍数 5的倍数

  师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它自身,没有最大的倍数)

  三、课堂小结:

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  四、独立作业:

  完成练习二1~4题

  课后反思:

五年级上册《因数和倍数》集体备课教案 篇8

  一、创设情景,明确探究目标

  师:人与人之间存在着许多种关系,我和你们的关系是……?

  生:师生关系。

  师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

  1.操作激活。

  师:我们已经认识了哪几类数?

  生:自然数,小数,分数。

  师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

  2.全班交流。

  112=12                    26=12           34=12

  121=12                    62=12           43=12

  12÷1=12                    12÷2=6           12÷3=4

  12÷12=1                    12÷6=2           12÷4=3

  师:在这3组乘、除法算式中,都有什么共同点?

  生汇报。

  师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。

  师:2和6与12的关系还可以怎样说呢?

  生:2和6是12的因数,12是2的倍数,也是6的倍数。

  师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

  小组合作,交流汇报。

  师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

  揭示课题:今天我们要根据这些算式研究数学新本领。因数和倍数。

  师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的关系了?

  那你还能找出12的其他因数吗?

  3.举例内化:

  你能写出一个算式,让你的同桌找一找因数和倍数吗?(学生互说,教师巡视找出典型例子)

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为36=18,所以18是倍数,3和6是因数。

  师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

  生:因为没有说明18是谁的倍数,所以不对。

  师:你认为怎样说才正确呢?

  生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

  师强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

  二、自主探究,找因数和倍数

  1.拓展提升,主动建构:

  ⑴迁移尝试:请学生试着找出36的所有因数。

  ⑵交流方法:教师即时捕捉开发学生在课堂上的基础性教学资源,并及时创生为生成性的教学资源,引导学生在交流中评价,在评价中探究,在发现中建构。预计学生会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,如2,3,6,而且仅此写出了几个;二是有顺序地用乘法(  )(   )=36的方法,一对一对地写出了1,36,2,18,3,12,4,9,6,但没有按照从小到大的顺序写;三是用除法36÷(  )=(  )的方法想,而且是有顺序地从小到大全部写出: 1,2,3,4,6,9,12,18,36。

  ⑶启迪思考:怎样找才能不重复不遗漏?

  小组合作,自主探究,汇报交流。

  找一个数的因数时要做到不重复也不遗漏,方法可以有:

  用乘法(  )(   )=36的方法,一对一对地写;

  或者是用除法36÷(  )=(  )的方法想,而且是有顺序地从小到大全部写。

  36的因数有:1,2,3,4,6,9,12,18,36。(板书)

  ⑷试一试找20的所有因数。

  ⑸介绍36的因数的另一种写法----集合

  用集合形式写18的因数

  2.创设情境,自主探究:

  请学生写出6的倍数。预计学生在写6的倍数时,会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,6二是有顺序地用乘法口诀写6,三是用加法的方法,每次递加6;四是用除法想,(    )÷6=1、(    )÷6=2、(    )÷6=3的方法写。同时可能还会有学生在教师宣布时间到的时候会因为6的倍数写不完而抱怨时间太少。

  请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法。(评价时突出有序思维的策略)

  3.迁移内化,自主探究:

  ⑴尝试迁移:请学生尝试迁移,用自己喜欢的方法写出2的倍数和5,4,7的倍数。

  2的倍数有:2,4,6,8,10,12……

  5的倍数有:5,10,15,20,25……

  ⑵引导观察:请学生观察以上这些数的倍数,有什么发现?

  (一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)

  (3)还记得因数吗,出示课件

  观察:看一看这些数的因数,你有什么发现?(36最小的因数是1,最大的是36,……一个数最小的因数是1,最大的因数是它本身。)

  三、变式拓展,实践应用

  指导学生做书本“练习二”的第2题和第3题。

  四、全课总结

  师:今天这节课我们一起学习了“约数和倍数”,你有哪些收获?

  课堂练习:游戏:“我的朋友在哪里?”

  游戏规则:(1)一位同学提出所要找的朋友的要求,例:“我的因数在哪里?”或“我的倍数在哪里?”(2)相应学号的同学站起来,其他同学判断是否正确。

  作业安排:

  引导学生根据实际猜老师年龄,给出范围:老师的年龄既是2的倍数也是5的倍数

  教学目标:

  1.通过动手操作和写不同的乘法算式,认识倍数和因数。

  2.依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

  3.在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  教学重点、难点分析:

  由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。

  教学课时:人教版五年级下册第二单元《因数与倍数》第一课时

  教具学具准备:

  1.学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。

  2.教师准备多媒体课件。

五年级上册《因数和倍数》集体备课教案 篇9

  一、学情分析

  学生在平时学习中缺少主动性,一部分学生怕困难,缺乏独立思考的习惯,同时考虑问题也不够全面。在本单元的教学中,需要调动学生学习的积极性,提高学生课堂学习的参与性,体验成功的乐趣,通过学生的亲自探索和合作交流,来达到学习知识,掌握所学知识的目的。同时感受数学中的奥妙。

  二、教材分析

  《倍数和因数》是冀教版第五单元的内容,也是小学阶段“数与代数”部分的最重要知识之一,在四年级教材中占有相当重要的内容。本单元是在学生认识了亿以内的数,已经掌握整数加减乘除四则计算的基础上学习的。这一单元更为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础,可以说这一单元对以后的数学学习起着非常重要的作用。这一单元主要包括了五个课时。第一课时,自然数。第二课时倍数,第三课时2.5的倍数的特征,第四课时3的倍数的特征,第五课时 认识因数、质数、合数,第六课时,分解质因数。第七课时,综合练习。

  在对整数和自然数的认识中,概念较多,而且容易混淆,难以理解和掌握,本套教材在整数概念的认识和相关计算的编排上,采取与相关知识整合、分散编排的方式,降低学习的难度,增强知识的应用性。

  三、单元教学目标

  1.了解自然数、奇数、偶数、质数、合数,并能进行判断。

  2.了解倍数的含义,在1~100的自然树中,能找出10以内自然数的所有倍数,知道2.3.5的倍数的特征,会判断一个数是不是2.3.5的倍数。

  3.了解乘数也叫因数,在1~100的自然树中,能找出一个自然数的所有因数,会分解质因数。

  4.在观察、探索、猜想、验证的过程中,能进行有条理的思考,能比较清楚的表达自己的思考过程与结果。

  5.愿意了解社会生活中与数学有关的信息,主动参与数学学习活动中;初步养成乐于思考、勇于探索数学问题的良好品质。

  四、重点

  1、找一个数的倍数的方法。

  2、找一个数的因数的方法。

  3、寻找2.3.5的倍数的特征。

  4、区分倍数和因数

  5、区分质数和合数

  6、分解质因数。

  五、说教法、说学法

  1.在第一课时自然数这一课时,有两个知识点,认识自然数,认识奇数和偶数。根据本节教学内容的特点,立足于小学四年级学生的思维,决定采用合作探究式的教学方法,通过启发引导法,观察发现法以及直接讲授法来指导学生学习新知,培养学生学习的数学的兴趣。

  2.在第二课时《倍数》这一课时,有两个知识点,认识倍数是基础,找一个数的倍数的方法是重点,也是难点。我会创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受。

  3.在第三、四课时《2、3、5的倍数的特征》这两个课时,这两个课时都是找规律。我会通过启发诱导、让学生小组合作探究的方式来学习新知。

  4.在第五课时《认识因数、质数、合数》这一课时,我会利用故事激趣,设疑导入,利用多媒体展示“哥德巴赫猜想”这个故事,引入质数、合数的概念,举例讲授质数、合数的概念,通过练习让学习加深理解。然后会让学生合作探究找一个因数的方法。从而导入这节课的教学活动。

  5.在第六课时《分解质因数》这一课时,通过复习因数质数、合数导入新知,然后在合作、交流、讨论中探究新知,最后让学生通过小组合作交流讨论来探究分解质因数的方法。

五年级上册《因数和倍数》集体备课教案 篇10

  教学目标:

  1、学生掌握找一个数的因数,倍数的方法;

  2、学生能了解一个数的因数是有限的,倍数是无限的;

  3、能熟练地找一个数的因数和倍数;

  4、培养学生的观察能力。

  教学重点:

  掌握找一个数的因数和倍数的方法。

  教学难点:

  能熟练地找一个数的因数和倍数。

  教学过程:

  一、引入新课。

  1、出示主题图,让学生各列一道乘法算式。

  2、师:看你能不能读懂下面的算式?

  出示:因为2×6=12

  所以2是12的因数,6也是12的因数;

  12是2的倍数,12也是6的倍数。

  3、师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的关系了?

  那你还能找出12的其他因数吗?

  4、你能不能写一个算式来考考同桌?学生写算式。

  师:谁来出一个算式考考全班同学?

  5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

  齐读p12的注意。

  二、新授

  (一)找因数

  1、出示例1:18的因数有哪几个?

  从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

  学生尝试完成:汇报

  (18的因数有: 1,2,3,6,9,18)

  师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  师:18的因数中,最小的是几?的是几?我们在写的时候一般都是从小到大排列的。

  2、用这样的方法,请你再找一找36的因数有那些?

  汇报36的因数有: 1,2,3,4,6,9,12,18,36

  师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,的是几?

  看来,任何一个数的因数,最小的一定是( ),而的一定是( )。

  3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。

  4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

  18的因数

  1、2、3、6、9、18

  小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数

  1、我们一起找到了18的因数,那2的倍数你能找出来吗?

  汇报:2、4、6、8、10、16、……

  师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

  那么2的倍数最小是几?的你能找到吗?

  2、让学生完成做一做1、2小题:找3和5的倍数。

  汇报 3的倍数有:3,6,9,12

  师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……倍)

  5的倍数有:5,10,15,20,……

  师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

  2的倍数 3的倍数 5的倍数

  2、4、6、8…… 3、6、9…… 5、10、15……

  师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它本身,没有的倍数)

  三、课堂小结

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  四、独立作业

  完成练习二1~4题

五年级上册《因数和倍数》集体备课教案 篇11

  教学内容九年义务教育人教版小学数学五年级下册第二单元“倍数和因数”。

  教学目标:

  1、 通过练习,使学生进一步理解倍数和因数,奇数和偶数,素数和合数的意义。

  2、 使学生进一步掌握2、3、5的倍数的特征。

  3、 让学生进一步体会探索数的一些特征和方法,培养分析、比较和抽象概括能力,感受数学知识的内在联系。

  4、 让学生进一步体会到数学内容的奇妙、有趣,产生对数学知识的好奇心。

  练习背景:

  学生在练习之前已经初步掌握了倍数、因数、奇数、偶数、素数、合数的意义。掌握了求一个数的倍数或因数的方法及其特点。学生还在学了因数和倍数的基础上发现了2、5、3的倍数的特征,根据特征能判断一个数是否是2、5、3的倍数。学习完这些概念后,很有必要对这部分知识做个梳理与练习,使学生对这些概念有进一步的理解和掌握。所以教材安排了两课时的练习,第一课时练习有关倍数和因数,以及2、3、5的倍数的特征的知识。第二课时主要以练习素数和合数概念为主,以及这些概念的比较与区分。本课是在第一课时练习的基础上进一步的巩固提高练习。通过本课的练习,进一步帮助学生清晰理解各个概念,区别容易混淆的几个概念,提高学生的数学水平。

  练习设计:

  一、 谈话导入:

  同学们,在本单元我们学习了很多概念,上节课我们针对有关倍数、因数的概念以及2、3、5倍数的特征进行了练习,除了这些我们在这单元还学习了什么概念呢?

  (设计意图:在练习之前,引导学生对学习的旧知进行回顾,唤起学生对知识的主动回忆,我估计学生都能想到还学习了素数和合数这两个概念.)

  指出:今天我们这节课主要就素数和合数概念以及前面的几个概念进行一个综合练习。

  二、 基本练习:

  1、仔细推敲,对号入座。

  在2、15、6、10、45这些数中,谁是谁的因数,谁是谁的倍数?

  2、自己举个例子说说谁是谁的因数,谁是谁的倍数?

  3、说一说上面这些数中哪些是奇数,哪些是偶数?

  (设计意图:这里我列出了5个数字,让学生直接说出谁是谁的因数,谁是谁的倍数,相对于学生根据乘法或除法说出因数与倍数关系要稍微复杂和抽象了一些。这个练习主要帮助学生回顾梳理有关因数和倍数以及奇数和偶数的概念。)

  过程及意图:

  1、 先自己与同桌说一说,你能和同桌说的不一样吗?

  2、 集体交流。

  (设计意图:先让学生自己相互说一说,是给学生的思维一个缓冲,由于答案不是唯一的,这里不一定让学生说出全部,可以在集体交流时引导:“还有不一样的吗?”使其完整。教师不需要都板书,可以选择其中一种写一写。)

  3、 自己再举例说明因数和倍数关系。

  (设计意图:我设计这样一个开放性的练习,是为了让学生对因数和倍数的概念认识地更深入些。注意让多个学生说一说,学生在说一个数的因数或倍数时,提问:这个数的因数或倍数还有哪些?从而回顾因数与倍数的特点。)

  4、说说这些数中哪些是奇数哪些又是偶数?

  (设计意图:让学生先结合具体的数说说哪些是奇数哪些是偶数,然后引导学生有具体到抽象,回忆出什么叫奇数,什么叫偶数?我们是怎样判断奇数和偶数的?对奇数偶数的概念也做个简单的回顾,为下面这些概念的综合练习做个铺垫。)

  二、对比练习

  1、 找出下面每组数中的素数。

  (1)19  29  39   49 

  (2)5   15  25   35

  (3)17  27  37   47

  2、 判断下面的数是素数还是合数,并说说理由。

  2  21  11  45  77 

  (设计意图:这是书上练习六第8题,安排这个练习主要是有关素数和合数的概念的练习,通过练习使学生进一步明确什么叫素数?什么叫合数?掌握判断素数或合数的方法。后面是我自己设计的一个练习,在第一个练习完后用卡片出示,通过这五个数字的判断让学生熟练掌握判断方法。)

  过程及意图:

  1、 先说一说什么叫素数?什么叫合数?判断一个数是素数还是合数看什么?

  (设计意图:在判断之前先帮助学生回顾有关概念及判断方法,为下面的判断练习做个铺垫,我估计一下子让学生判断对于中差生来说可能有些遗忘,一下子不知道如何下手,所以先安排了这样一个说一说。)

  2、 学生在书上把素数圈出来。

  3、 集体交流。

  (设计意图:有了前面的回顾,学生在判断的时候有了目标,这里要注意两个问题,一是,突出素数与合数的比较。如果是素数要让学生说说为什么?如果不是,更要让学生说说为什么不是?二是,要充分利用好学生中的错误资源,让学生在错误中寻找到判断的好方法。我估计在49的判断上学生会出现意见分歧,因为一般情况学生只会去思考除了1和本身是否有因数2、5、3而忽略了有没有因数7,所以在这时要注意在错误中分析原因,并且帮助学生找到判断方法——不仅要看看是否有因数2、3、5还要注意看看是否有因数7,有时甚至还要更大,这里点到为止即可,不需要更多展开。)

  4、 比较发现。

  问:比一比每组数有什么特点?判断完后你有些什么体会?

  (设计意图:这里教材安排的每组数的各位数字都相同,我估计学生这个现象都能发现,关键是让学生谈谈体会,先可以让学生自由地说一说,如果有困难可以问:从中体会到一个数是否是素数与什么无关?而与什么有关?让学生体会与各位数字无关,我们要看这个数因数的个数。因为在以往的教学中,同学们常常会在各位是7或9的数的判断上出现教多的错误。这样使学生对素数的认识更加深刻。)

  三、 综合练习

  1、用“”圈出表中所有的素数,用“△”圈出表中所有的偶数。

  1 2 3 4 5 6 7 8 9 10

  11 12 13 14 15 16 17 18 19 20

  (设计意图:以往教学下来我发现学生对奇数与素数、偶数与合数往往混淆不清,这是为了区分这些概念而设计的。这里呈现一张具体的表格,让学生根据表格的现象主动区分不同的概念,体会到他们是不同的概念,但它们之间也有一定的联系,素数中有偶数,偶数里有素数。形象直观的表格避免了对这些问题进行抽象的,甚至文字游戏式的机械操练。也有利学生的理解和掌握。)

  3、 判断下面的说法正确吗?不对的改正。

  (1)只有两个因数的数叫做素数。  ( )

  (2)1是素数。          ( )

  (3)自然数中除了奇数其他都是偶数。( )

  (4)自然数中除了素数其他都是合数。 ( )

  (5)所有的偶数都是合数。   ( )

  (设计意图:这个练习是对容易混淆的概念,进行比较和区分设计的。通过练习让学生进一步明确概念的区别和联系。)

  过程及意图:

  1、 用“”圈出表中所有的素数

  2、 集体校对。

  (设计意图:找素数和偶数我估计学生没有多大的困难,在校对过程中,注意引导学生思考这个问题:同学们用“”圈出了素数,那没有圈出来的是什么数呢?我估计有些学生马上会脱口而出“都是合数”,而后会有学生发现问题反驳这种观点,设计这个提问一是进一步理解素数、合数的概念,明确1既不是素数也不是合数,也为下面有关自然数的分类做铺垫。)

  3、 用“△”圈出表中所有的偶数。

  4、 集体校对

  (设计意图:这里也同上引导学生思考这个问题:没有打△的都是什么数,让学生进一步明确自然数中不是偶数就是奇数。)

  5、 探索规律:观察表格,你有什么发现?你有没有发现什么特别的数?

  (设计意图这里改变了书上提问,不直接问:所有的素数都是奇数吗?所有的偶数都是合数吗?而是提了一个开放性的问题,先让学生自己说说自己的想法,我估计通过表格的直观呈现,“2”既打上了“”又打上了“△”就形象地说明了2既是素数又是偶数,充分地说明了素数中有偶数,偶数里也有素数。这里表达的方式可以多一些,只要学生说的意思正确即可。)

五年级上册《因数和倍数》集体备课教案 篇12

  一、教学内容

  1.因数和倍数

  2.2、5、3的倍数的特征

  3.质数和合数

  二、教学目标

  1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.使学生通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象能力。

  三、编排特点

  1.精简概念,减轻学生记忆负担。

  三方面的调整:

  A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

  B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

  C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

  2.注意体现数学的抽象性。

  数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

  四、具体编排

  1.因数和倍数

  因数和倍数的概念

  过去:用÷=表示能被整除,÷=表示能被整除。

  现在:用=直接引出因数和倍数的概念。

  (1)用2×6=12给出因数和倍数的概念。

  (2)用3×4=12进一步巩固上述概念。

  (3)让学生利用因数和倍数的概念自主发现12的其他因数。

  (4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

  (5)说明本单元的研究范围。

  注意以下几点:

  (1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

  (2)因数和倍数是一对相互依存的概念,不能单独存在。

  (3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

  (4)注意区分“倍数”与前面学过的“倍”的联系与区别。

  例1(一个数的因数的求法)

  (1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

  (2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

  一个数的因数的特点

  (1)因数是其自身,最小因数是1。

  (2)因数个数有限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  例2(一个数的倍数的求法)

  (1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

  (2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

  做一做

  与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

  一个数的倍数的特点

  (1)最小倍数是其自身,没有的倍数。

  (2)因数个数无限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  2.2、5、3的倍数的特征

  因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

  2的倍数的特征

  (1)从生活情境“双号”引入。

  (2)观察2的倍数的个位数,总结出2的倍数的特征。

  (3)介绍奇数和偶数的概念。

  (4)可让学生随意找一些数进行验证,但不要求严格的证明。

  5的倍数的特征

  (1)编排方式与2的倍数的特征类似。

  (2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

  3的倍数的特征

  (1)强调自主探索,让学生经历观察猜想*猜想再观察再猜想验证的过程。

  (2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

  (3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

  3.质数和合数

  质数和合数的概念

  (1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

  (2)可任出一个数,让学生根据概念判断其为质数还是合数。

  例1(找100以内的质数)

  (1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

  (2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

  五、教学建议

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

  从因数和倍数的含义去理解其他的相关概念。

  2.要注意培养学生的抽象思维能力。

五年级上册《因数和倍数》集体备课教案 篇13

  问题提出:

  《因数和倍数》是一节数学概念课。数学概念是抽象与具体、各别与一般的辨证统一。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除,在此基础上再引出因数和倍数的概念。人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式,通过这个乘法算式直接给出因数和倍数的概念。新教材这样编排有利于教材结构与学生的认知结构产生同化,有利于学生主动构建新知。基于新教材带来的优势,我选择了《因数和倍数》一课。

  案例概述:

  《因数和倍数》第一稿

  “兴趣是最好的老师”。在初步设计课时,我从学生喜闻乐见的趣味成语导入,并通过成语展开教学:

  一、成语引入

  课件出示:(   )面(   )方  (   )光(   )色   举(   )反(   )

  二、探究因数和倍数的意义

  (一) 四面八方

  1.探究8的因数

  (1)板书:42=8   这是一个乘法算式,在数学上这几个数就具备了一种关系。这时4就是8的因数(过去叫约数),8是4的倍数。(指名说,板书)

  因数和倍数就是今天我们要研究的内容。

  (2) 2呢?相邻两个同学互相说一说。

  (3) 8的因数只有2和4吗?

  (4) 学生找8的因数还有1和8。( 小组说1和8之间的关系) 

  (5) 你能在练习纸上写出8的因数吗?。指名上台写  (评价写的方法)

  (6) 画集合图表示8的因数。

  2.探究8的倍数

  (1)我们找出8的因数了,那8的倍数有哪些数呢?你能说一个吗?

  (2)在练习本上写出8的倍数。指名上台写。(写得完吗?怎么办?)

  (3)那找8的倍数你有什么小窍门吗?

  (二) 五光十色

  1.根据刚才大家研究8的经验,再来研究10,找出10的因数和倍数。你行吗?(学生自己写,指名板演)

  2.你是怎样找出10的因数(倍数)?(课件出示,板书)

  (三)举一反三

  1.研究了8和10,其它数还行吗?

  出示:你能从中选两个数,说一说谁是谁的因数?谁是谁的倍数吗?

  3、5、18、20、36

  2.刚才老师在听的时候,发现有好几个数都是36的因数,你发现了吗?在这里36的因数都有谁呢?

  3.你能把36的因数全都找出来吗?(学生在练习纸上独立写出)

  4.汇报。(评价方法)

  5.学习到这儿,你有什么发现吗?(课件出示)

  一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

  一个数的倍数的个数是无限的,最小的倍数是它本身。

  6.我们说的数是什么样的数?

  (课件出示)为了方便,在研究因数和倍数时,我们所说的数指的是整数(一般不包括0)。

  三、巩固深化

  1.向自己挑战:用今天学的知识介绍一下你自己。 ( 指名说, 组内介绍)

  2.“找朋友”游戏。

  3.介绍“完美数”。

  教后反思:

  上完课之后,我感到有很多不足之处,听课领导和老师也给我提出了中肯的意见和建议,存在问题主要有:

  1.导入环节的这几个趣味成语,学生很容易猜出,对于激发学生的兴趣效果不是很明显。

  2.由于在教学设计中没有考虑到因数和倍数之间相互依存的关系,所以学生理解得不是很深刻,这也导致了出现“2是因数,8是倍数”这样的情况。

  3.在研究因数的方法上,学生体会得不很深刻,掌握得不很扎实。整节课学生的思维能力没有得到有效锻炼和提高,尤其使学生能有序地找出一个数的因数这一环节设计上,选择的数偏大(36),因数个数比较多,对学生来说有一些难度,导致了这一环节层次不清晰,学生也不能够有效地掌握找一个数因数的方法。

五年级上册《因数和倍数》集体备课教案 篇14

  《因数和倍数》教学反思

  《因数和倍数》是一节数学概念课,通过这个乘法算式直接给出因数和倍数的概念。这部分内容学生初次接触,对于学生来说是比较难掌握的内容。

  数学课程标准“以人为本”的理念决定着数学教学目标的指向:适应并促进学生的发展。根据本节课知识的特点和学生的认知规律,我采用了角色转换、数形结合、合作学习等发展性教学手段进行教学,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。在课堂中,我主要围绕以下几方面来进行教学:

  (1)捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。

  因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用一个脑筋急转弯,渗透相互依存的关系。  通过生活中人与人之间的关系,迁移到数学中的数和数之间的关系,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发了对数学的兴趣,又潜移默化地帮助学生理解了因数倍数之间的相互依存关系。在教学中,也达到了预期的效果,学生对因数和倍数相互依存的关系理解的比较深刻。

  (2)角色转换,让学生亲身体验数和数之间的联系。

  因数和倍数这节课研究的是数和数之间的关系,知识内容比较抽象。因而,我采用了“拟人化”的教学手段,每人一张数字卡片,学生和老师都变成了数学王国里的一名成员。当学生想回答问题时都会高高地举起自己的号码,整节课学生都沉浸在自己的角色体验中,学生都把自己当成了一个数。通过对自己一个数的认识,举一反三,从而理解了数与数之间的因数和倍数关系,既充分激发了学生的学习兴趣,又十分有效地突破了教学难点。

  (3)数形结合,让学生带着已有知识走进数学课堂。

  “数形结合”是一种重要的数学思想。对教师来说则是一种教学策略,是一种发展性课堂教学手段;对学生来说又是一种学习方法。如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。开课教师引导学生进行空间想象。

  (4)重组教材,根据学生的实际情况,多种形式探究找因数倍数的方法。

  教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出20和24的因数,达到了巩固练习的目的。这样设计由易到难,由浅入深,符合了学生的认知规律。而在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生提供了广阔的思维空间。这样通过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。

  (5)趣味活动,扩大学生思维的空间,培养学生发散思维的能力。

  只有让学生亲身感受到数学知识内在的智取因素,数学学习的无穷魅力才能深深地打动学生。这节课的练习设计紧紧把握概念的内涵与外延,设计有效练习,拓展知识空间。譬如:让学生用所学知识介绍自己,通过数字卡片找自己的因数和倍数朋友等等。学生拿着自己的数字卡片上台找自己的朋友,让台下学生判断自己的学号是不是这个数的因数或倍数,如果台下学生的学号是这个数的因数或倍数就站到前面。由于答案不唯一,学生思考问题的空间很大,这样既培养了学生的发散思维能力,又使学生享受到了数学思维的快乐。但由于我缺乏时间观念,这部分时间太仓促,没有展开练习,学生没有尽兴,也没有达到充分地练习效果。

  因数和倍数教学反思

  《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

  这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

  (一)  操作实践,举例内化,认识倍数和因数

  我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。

  (二)自主探究,意义建构,找倍数和因数

  整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

  新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。

  找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

  (三)变式拓展,实践应用---—促进智能内化

  练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。

  由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

221381
领取福利

微信扫码领取福利

五年级上册《因数和倍数》集体备课教案(通用14篇)

微信扫码分享