欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 高中数学数列有哪些教学设计

高中数学数列有哪些教学设计

网友 分享 时间: 加入收藏 我要投稿 点赞

“sky256t”通过精心收集,向本站投稿了12篇高中数学数列有哪些教学设计,以下是小编收集整理后的高中数学数列有哪些教学设计,仅供参考,希望对大家有所帮助。

高中数学数列有哪些教学设计

篇1:高中数学数列教学经验总结

按照传统的教学理念来说,教学设计主要是指有效地运用相应的教学系统,有效地将教学与学习理论逐渐转变为有效地对教学参考资料和教学活动具体规划实现系统化的整个过程,其中教学内容、教学方法和教学效果问题在教学设计当中得到有效的解决.也可以说,所谓的教学设计就是将教学具体活动步骤制定成合理的教学方案,同时在教学结束后对教学过程进行相应的评估与总结,从而使教学效果得到提升,并实现对教学环境的优化工作.

高中数学数列教学经验总结2、数列主要包括一般的数列、等差数列、等比数列以及数列的应用四部分

重点是等差数列以及等比数列这两部分。数列这一部分主要是数列的概念、特点、分类以及数列的通项公式;等差数列和等比数列这两部分内容主要介绍了两类特殊数列的概念、性质、通项公式以及数列的前 n 项和公式;数列的应用除了渗透在等差与等比数列内宾的堆放物品总数的计算以及产品规格设计的某些问题外,重点是新理念下研究性学习专题,即数列在分期付款中的应用以及储蓄问题。

数列这一章蕴含着多种数学思想及方法,如函数思想、方程思想,而且在基本概念、公式的教学本身中也包含着丰富的数学方法,掌握这些思想方法不仅可以增进对数列概念、公式的理解,而且运用数学思想方法解决问题的过程,往往能诱发知识的迁移,使学生产生举一反三、融会贯通的解决多数列问题。在这一章主要用到了以下几中数学方法:

①不完全归纳法不完全归纳法不但可以培养学生的数学直观,而且可以帮助学生有效的解决问题,在等差数列以及等比数列通项公式推导的过程就用到了不完全归纳法。

②倒叙相加法等差数列前n项和公式的推导过程中,就根据等差数列的特点,很好的应用了倒叙相加法,而且在这一章的很多问题都直接或间接地用到了这种方法。

③错位相减法错位相减法是另一类数列求和的方法,它主要应用于求和的项之间通过一定的变形可以相互转化,并且是多个数求和的问题。等比数列的前 n 项和公式的推导就用到了这种思想方法。

④函数的思想方法数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。

⑤方程的思想方法数列这一章涉及了多个关于首项、末项、项数、公差、公比、第 n 项和前 n 项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。

篇2:高中数学数列教学经验总结

在课堂教学中,教师若想提高教学效率,则需了解学生学情,然后在此基础上,紧扣教学内容,采用多种教学方法,以调动学生参与性,使其积极思考,把握科学学习方法,从而提高学习效率。

3.1 分析学生学习情况。进入高中后,多数同学有了较为丰富的经验与知识,也具有了一定的抽象思维、分析概括、演绎推理能力,可通过观察而抽象出一定的数学知识。同时,学生思维也由逻辑思维发展为抽象思维,但需依靠一些感知材料。当然,也有部分同学的数学基础知识不牢固,对数学缺少学习兴趣。因此,在高中数列教学中,教师需要根据学生认知结构,考虑学生学习特点,以贴近学生生活实际的实例为出发点,注意适时引导与启发,加强学生思维能力训练,以适应学生学习心理发展特征。如教师可创设生活化的教学情境,引导学生由生活实际问题来学习数列知识,构建数学模型。

3.2 分析教法与学法。当了解学生学习特点后,教师则需要灵活运用不同教学方法,以诱导学生主动参与课堂活动,展开积极思索。在课堂教学中,问题教学法是较为常用的,其主导思想为探究式教学。即教师精设系列问题,让学生在老师指导与启发下,自主分析与探究,从中获得结论,增强体验,得到知识,提高能力。如学习《等比数列前项和》时,教师可提出问题:某厂去年产值记作1,该厂计划于今后五年内每年产值比上一年增加10%,那么自今年起至第5年,该厂总产值是多少?该厂五年内的逐年产值有何特点?通过什么公式可求出总产值?这样,通过问题将学生带入等比数列前项和的探究学习中。其次,诱导思维法。通过这一方法,可凸显重点,帮助学生突破难点。同时,可发挥学生主观能动性,使其主动构建知识,培养创造精神。再次,分组讨论法。利用这一方法,可加强了师生、生生间的交流互动,碰撞思维,启迪智慧,使学生自主发现与解决问题。另外,还有讲练结合法。对于一些重难点知识,还需要教师详细见解,并借助典型例题,让学生巩固知识,掌握解题方法。此外,教师还需要对学生进行学法指导。如引导学生由实际问题对数组特征加以抽象,从而得到数列、等比与等差数列概念;如根据等比数列概念特征对等比数列通项公式加以推导等。在教学过程中,教师还可让能力较强的学生拓展思维方法,运用不同方法来推导等差或等比数列通项公式。同时,教师还需为学生留出充足的思考空间与时间,让学生大胆质疑、自主联想与探究。

总而言之,数列是高中数学知识体系中十分重要的一部分,因此教师在教学过程中应以新课改教学理念为基本依据,在教学过程中不断对教学方法进行探索和研究,并充分利用自身有力的教学特点根据不同学生的学习状况来对教学方法进行创新,从而使教学效果得到有效提高。

篇3:高中数学数列求和教学反思

本节课是高三一轮复习课,主要是对特殊数列求和。对于数列的复习,我觉得主要是复习好两个方面,一个是如何求数列的通项公式,另一个是如何求解数列的前n项和。这里的求和,对学生来说是一个难度很大的内容,因为此前学生一直是使用等差和等比数列的求和公式进行计算的,让他们忽然去理解和掌握错位相减和裂项相消等方法去求和,难度可想而知,所以这堂课不仅仅是复习课,而且也是一堂新课,课题是求和,学生一看就明白,但求和的对象变了,求和的方法变了。我在教学时,尊重学生的理解和掌握能力,循序渐进,不赶进度,学生要是不能掌握,那就再来一遍,特别是错位相减法,学生知道什么样的数列可以用错位相减法,但算不出正确的结果,所以课堂上在学生板演的基础上我再归纳一下做错位相减法的题目时要注意的地方,什么地方容易错,什么地方要注意等,争取在做作业时不要再犯同样的错误。而且在经后的教学过程中要多培养学生的运算能力以及解题能力,提高他们的动手能力,思维逻辑能力和分析问题的能力,数列求和在整个数列知识中试比较综合的内容,知识点多,方法也多,在做题时首先要思考一下该用什么方法,然后再着手,加上细心才能把题目做对,而现在的学生就是缺乏这点耐心和细心,总想着花最少的时间做较多的事,有时还不检验最后的结果,这是我们教师在教学过程中要渗透的地方,教会学生耐心、细心地做题,确保题目的正确率,在今后的教学中我会在这方面加强培养学生,同时在备课的时候加强培养学生的动手、动脑能力。

在变式题上,我从两个方面设计。其一,横向变化,其二是纵向变化。横向变化是:从公式→例题各个侧面来看求和,让学生开拓了视野,展开丰富的联想:分组求和可分两组,是否还有分三组来解的题?裂项相消法求和有分母裂项求和,是否还有分母有理化进行求和等。纵向变化:条件削弱,问题复杂,难度提升。从具体到抽象,从特殊到一般螺旋式的上升。横向变化,可看出思维变异的多样性。这种思维变异的多样性在今后的学习过程中将要面临的。如何理解这种数学的合理性呢?学生的学习的本质是继承、借鉴、发展、创新,而问题变式教学恰是在有实例的支持下,继承了思维变异的常用技巧,借鉴此技巧、寻求更多的变异,如分组成三个或更多个的式子求和,使学的思维得到充分的发展,从而取得创新的目的,这就是教学中所要取得的效果。从纵向变化,可看出思维变异的深入性。问题的层层深入,使问题的一般规律掀起盖头,让学生体验了思维向纵深发展的规律。

另外我想数学课上就应该允许学生出现错误,而教师就要学会利用这些错误,让课堂更加闪亮。

篇4:高中数学数列教学中的教学策略

一、构建数学高效课堂,激发学生学习数学的兴趣

数学学科具有一定的逻辑性和抽象性,要想让学生真正学好数学,首先就要培养学生的兴趣,尤其是高中数学的数列教学。那么,如何才能提高学生的学习兴趣呢?

对于教师来说,首先要营造良好的教学环境,教师要积极引导学生主动参与,鼓励学生积极探讨。让学生成为课堂的主人,让学生参与学习的每一个环节,步步为营,不断地为学生树立学习的信心。对于数列的学习来说,教师首先要为学生树立信心,将抽象的数列变为具体,教师在讲授有关数列知识时,可以结合生活的实践,让教学内容变得生动、形象、有趣,要让学生在轻松、愉快的氛围中学到数学知识。在进行教学导入的时候,教师可以先讲述有关数列的小故事,比如,国际象棋发明人在棋盘上放麦粒的故事等,由此,就可以引发学生对于数列的兴趣。教师也可以通过一些数列的游戏来激发学生的学习兴趣。对于学生来说,多数都喜欢听故事,玩游戏,教师可以抓住学生的心理特点,设计新颖的课堂讲授方法,而小故事、小游戏的方式形象富有感染力,易吸引学生的兴趣,满足学生的好奇心,增强学生的求知欲。

二、恰当设置疑问,深入探讨

你能在一分钟内求出从1到100的所有自然数之和吗?这是数学家高斯的老师对高斯提出的问题。对于教师来说,要想真正让学生走进数列,就要讲究一定的教学方法,恰当的设置疑问就是较为有效的方法之一,通过设置疑问,可以引起学生的思考,引发学生的热烈讨论,通过讨论求出“从1到100的所有自然数之和”,从而得出数列的求和公式,这样的教学方法一步一步地引导着学生前进,也能够轻松地构建愉快的'课堂,这样一来,学生才能够积极踊跃的学习,要想使得课堂气氛活跃起来,教师要善于创设教学情境,多设置疑问,提出让学生感兴趣的问题。另外,教师还要给学生留出自由探讨的时间和空间,让学生学会自主学习。这样久而久之,学生学习的兴趣也就会形成。

三、促进小组合作,优势互补

教师要因材施教,可以将学生的特长进行总结,把学生进行分类,根据学生的个性差异、能力强弱、兴趣爱好进行分组,这样一来,方便了学生的交流,学生之间相互取长补短,优势互补,教师可以任命一位综合实力较强的学生担任小组组长,小组组长要有足够的责任心,由小组长带着学生共同完成教师交代的任务。对于数列的学习,有时候可以借助小组的力量进行难题的解答,小组成员之间互帮互组,这样,避免了遇到难题时一个人解答不出来而心生挫败感,从而对于数列的学习失去兴趣。小组组长要根据每个组员的优势分配任务,对于组长来说,我们要挑选能力强的学生,也可以适当对其进行培训,提高其能力,担负起组长的责任,这样一来,和学生交流方便,既帮助较差的学生,又减轻了老师的压力。

四、从教材出发,打牢基础

高中数学中数列的学习虽然让教师和学生为之头疼,但只要找到正确的学习方法,也就很容易提高学生的学习效率。然而,在学习的这一条道路上,是没有捷径可走的,学生要想真正的学牢知识,理解知识,灵活的运用数列来解决问题,那么,打好基础是最为关键的。要想让学生打好基础,对于教师来说,可以从以下几个方面入手。首先,教师可以要求学生整理数学笔记,将经典的练习题记录下来,将重要的公式记录下来,学生可以通过经典的例题寻找其他题目的解决方法,就拿数列求和来说,所涉及的几种方法都有固定的模式,学生要想自己独立的解决数题目,就必须把教师所讲的几种方法记录下来。其次,教师应要求学生背会基本的公式,公式是解决数列问题的基础。教师可以发挥小组的作用,让小组成员之间相互检查,直到熟练为止。

五、加强师生交流,构建新型师生关系

学好数学的前提是学生和教师之间要做好充分的交流,只有良好的师生交流,才能营造良好的课堂气氛,提高课堂效率。师生之间的交流要以信任为基础,促进师生之间情感的交流。对于教师来说,不能摆架子,平时要做到对学生足够的关心。尤其是对一些能力较差的学生,在数列教学中多举一些教学例子,让学生观察归纳公式与各项的结构关系,熟练掌握知识。只有师生间的关系融洽了,才能为学生营造气氛轻松的课堂,对于这样的教学气氛来说,教师乐意“教”,学生也乐意“学”,这样一来,教学的效率自然也就提高了。

对于高中数学数列的教学中,还存在着种种困难,本文所讲述的教学方案也不甚全面,但是,我相信,在广大教师的努力下,学生对于数列的学习和应用会越来越好。

参考文献:

贺育斌。高中数列教学研究[D]。内蒙古师范大学,.

篇5:高中数学数列教学中的教学策略

翟艳芳

(湖北省宜昌市第十八中学)

摘 要:对于高中数学教学来说,数列的教学是教师的一大难题,从学生角度出发,数列也是较难理解的板块,因此,数列的教学往往不够理想。在新课标理念下,高中数学的教学面临着重大的挑战,对于数列的教学更需要改变传统的教学策略,就高中数学数列教学中的教学策略进行深入的探讨和研究。

篇6: 高中数学教学设计

教学目标

(1)理解四种命题的概念;

(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

(3)理解一个命题的真假与其他三个命题真假间的关系;

(4)初步掌握反证法的概念及反证法证题的基本步骤;

(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.

教学重点和难点

重点:四种命题之间的关系;难点:反证法的运用.

教学过程设计

第一课时:四种命题

一、导入新课

【练习】1.把下列命题改写成“若p则q”的形式:

(l)同位角相等,两直线平行;

(2)正方形的四条边相等.

2.什么叫互逆命题?上述命题的逆命题是什么?

将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.

如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.

上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.

值得指出的是原命题和逆命题是相对的..我们也可以把逆命题当成原命题,去求它的逆命题.

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.

设计意图:

通过复习旧知识,打下学习否命题、逆否命题的基础.

二、新课

【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.

【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

学生活动:

口答:若一个四边形不是正方形,则它的四条边不相等.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.

若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.

【板书】原命题:若p则q;

否命题:若┐p则q┐.

【提问】原命题真,否命题一定真吗?举例说明?

学生活动:

讲论后回答:

原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.

原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.

由此可以得原命题真,它的否命题不一定真.

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.

教师活动:

【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

学生活动:

讨论后回答

【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.

教师活动:

【提问】原命题“正方形的四条边相等”的逆否命题是什么?

学生活动:

口答:若一个四边形的四条边不相等,则不是正方形.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.

原命题是“若p则q”,则逆否命题为“若┐q则┐p.

【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真.

教师活动:

【提问】原命题的真假与其他三种命题的真

假有什么关系?举例加以说明?

【总结】1.原命题为真,它的逆命题不一定为真.

2.原命题为真,它的否命题不一定为真.

3.原命题为真,它的逆否命题一定为真.

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.

教师活动:

三、课堂练习

1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?

学生活动:笔答

教师活动:

2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?

学生活动:讨论后回答

设计意图:

通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.

教师活动:

篇7: 高中数学教学设计

一、教学目标

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

4、初步培养学生反证法的数学思维。

二、教学分析

重点:四种命题;难点:四种命题的关系

1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)

1、以故事形式入题

2、多媒体演示

四、教学过程

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意图:创设情景,激发学生学习兴趣

(二)复习提问:

1.命题“同位角相等,两直线平行”的条件与结论各是什么?

2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:(1)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.

设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

(三)新课讲解:

1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

(四)组织讨论:

让学生归纳什么是否命题,什么是逆否命题。

例1及例2

(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真

引导学生讨论原命题的真假与其他三种命题的真

假有什么关系?举例加以说明,同学们踊跃发言。

(六)课堂小结:

1、一般地,用p和q分别表示原命题的条件和结论,用Vp和Vq分别表示p和q否定时,四种命题的形式就是:

原命题若p则q;

逆命题若q则p;(交换原命题的条件和结论)

否命题,若Vp则Vq;(同时否定原命题的条件和结论)

逆否命题若Vq则Vp。(交换原命题的条件和结论,并且同时否定)

2、四种命题的关系

(1).原命题为真,它的逆命题不一定为真.

(2).原命题为真,它的否命题不一定为真.

(3).原命题为真,它的逆否命题一定为真

(七)回扣引入

分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

第一句:“该来的没来”

其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

同学们,生活中处处是数学,期待我们善于发现的眼睛

五、作业

1.设原命题是“若

断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判

2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.

篇8:高中数学如何教学设计

1、诊断学生,做到知彼。

俗话说:“知己知彼,百战百胜。”教学过程是师生互动的双边活动,教师要使课堂教学达到预期的目的,在进行教学设计时先要诊断学习的真正主人——学生。在教学过程中学生原有的知识、经验、能力水平、个性、爱好、兴趣必然影响着教学活动的展开和推进。因此,教师要尽可能多地了解学生,关注学生的年龄特征、心理特征和差异,预测学生学习时可能遇到的思维障碍,才能时机适宜地切入新知识,使新旧知识合理地衔接起来。

2、课堂小结要与三维目标相呼应

三维目标是课堂教学的出发点与归宿,课堂小结时要回应三维目标,要在教师引领下由学生合作完成小结。包括①在知识与技能方面的收获,②教学中是怎样研究学习新知识的,融合重点与难点的突破于其中,③提炼价值,升华感情。最后教师最好用知识网络的形式给以最后的总结。

3、恰当地选择教学手段

要根据教材的具体情况恰当地设计教学手段,力争做到形象生动,促使教学达到最佳的效果。例如在椭圆、双曲线和抛物线这样的课中,用教具演示来揭示它们的定义,更具有形象性。如在指数和对数函数性质的研究中,教师自制课件利用多媒体辅助教学,使学生看到随着底数a值的变化得到的函数和图像的动态变化,从而对这些函数的性质有深刻的认识和牢固的记忆。在使用计算机辅助教学盛行的今天,教师不要忘记板书,关键的知识要通过板书来呈现,使学生对知识的系统、结构在脑海中留下影像。

篇9:高中数学如何教学设计

做好课堂导入设计

首先,可以联系实际生活。数学知识在生活中有着广泛的应用,与实际生活有着广泛的联系,在进行课堂导入设计时,教师可以联系学生的实际生活,激发学生的好奇心。例如在学习抛物线的知识时,可以这样导入:让学生回想一下打篮球的情景,由于场地限制,在课堂上可以用乒乓球代替篮球,做投篮动作,让学生仔细观察篮球(乒乓球)落地时的轨迹,在学生积极参讨论时,引入抛物线的知识。在导入中联系实际生活,不仅能够激发学生的兴趣,并且能够拉近学生与数学之间的距离。

其次,教师可以利用数学史进行导入。数学教材中很多知识都与数学史相关,学生对这部分知识充满兴趣,因此在教学过程中,教师设计课堂导入时可以从这一点入手,先通过提问或者介绍的方式,让学生了解数学史上的重大事件和重要人物等,引起学生的敬佩和仰慕之情,然后引入相关的数学知识。兴趣是最好的老师,在学生的期待下展开数学教学,无疑会提高课堂教学效率。课堂导入的方式有很多种,在具体的操作环节,教师要注意导入方式的多样性,才能更好地激发学生的兴趣,在高中数学教学中教师要根据实际情况进行合理选择使用。

做好课堂提问设计

首先,教师要精心设计问题。提问的目的是为了激发学生的兴趣和思维,因此,教师提问的问题不能是单调、重复的,而应该是具有启发性和针对性,能够激发学生的思考,引导学生进行步步深入。最重要的是,教师提出的问题要符合学生的知识水平和认知能力,教师不仅应该了解教材,并且要全面了解学生,这样才能使提出的问题符合学生的需要。学生的数学水平是不同的,接受能力也有差异,因此教师要注意提出问题的层次性,并针对不同水平的学生设计不同难度的问题,促进每个学生获得进步和发展。

其次,课堂提问的方式要多样化。如同教学方式需要多样化一样,提问的方式也要具有多样化的特点,这样才能更好地激发学生兴趣,达到教学目的,否则,无论教师设计的问题多么巧妙,学生也会感到厌烦。根据问题的内容和学生实际情况,提问可以是直接问答;可以是导思式;可以教师提问、学生回答;也可以是学生提问、教师回答。在教学过程中教师要注意培养学生的问题意识,鼓励学生自己提出问题,问题是思考的开端,对于学生来说提出问题比解决问题更重要,因此,教师要为学生创造机会,让学生在认真阅读教材的基础上,根据自己的理解提出不懂的问题。提出的问题教师可以进行点拨,让学生思考,也可以组织学生进行讨论,培养学生分析问题和解决问题的能力。

篇10:高中数学如何教学设计

合理制定三维目标,明确重点与难点。

《普通高中数学课程标准》提出的三维教学目标是:知识与技能,过程与方法,情感态度与价值观。知识与技能目标包括学生要知道、了解、理解的基础知识、基本原理目标和学生必须达到的基本技能目标;过程与方法目标包括实现数学科学中的探究过程和探究方法、优化学生的学习过程,强调学生探索新知识的经历和获得新知识的体验;情感态度与价值观目标中包括学生的学习兴趣与热情、战胜困难的精神、认识数学之美感和塑造学生的人格。三维目标之间的关系是“在实现知识与技能的过程中有机地融合、渗透过程与方法目标、情感态度与价值观目标的达成。”三维目标是课堂教学活动的出发点与归宿。

教学设计时教师要依据教材的具体内容,结合学生的学习实际,以促进每一个学生的发展为本,合理地制订三维目标,注意体现三维目标的整体性,相辅相成。所谓重点,指一节课中最重要的新知识,即联动全局,带动全面的重要之点,是学生认知发生转折与质变的地方,是教学的重心所在,是课堂教学中需要解决的主要矛盾。所谓难点是一节课中学习起来最困难的地方,是学生的认知能力与知识要求之间存在较大矛盾、知识跨越最大的地方,是学生难于理解和掌握的内容。例如“等差数列前n项和”这节课中的重点是“等差数列前n项和公式”,难点是“等差数列前n项和公式的推导——倒序相加法”。只有合理制订三维目标和确定好重点与难点,才能围绕三维目标和重点与难点的突破,制定出出色的教学设计。

创设生活情景,使数学生活化

为学生提供充分从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学体验,将数学应用于生活,提高自主探究数学知识的能力和学生学习数学能力。

认知最牢靠和最根深蒂固的部分就是生活中经常接触和经常使用的知识,有些已经进入了他们的潜意识。如果能把新知识巧妙地溶于生活情境中,那将会是学生非常欢迎的,一旦接受也会被牢固掌握。而现代教学手段比以往更容易让现实生活中的现象再现或模拟于课堂。因此,从学生的生活经验和知识背景出发,提供学生充分进行数学实践活动和交流的机会课堂效果一定会很好。用与学生年龄特征相适应的大众化、生活化的方式呈现数学内容,也是数学课程改革的一个基本思路。教师要敢于走出教材,走出课堂,走进丰富多彩的生活。比如在引入两个平面垂直的判定定理时,教师提出:建造一座大楼,怎样才能使墙面与地面垂直呢?学生很快会联想到建筑工人常常用一端系着铅锤的细绳让其垂直地面,并以这根绳子为参照,看看所砌的墙是否经过这条细绳。然后问:为什么若墙面经过这条绳子,所砌的墙就与地面垂直呢?还可以引导学生观察教室门板与地面的位置关系,它们是否垂直?转动门扇是否还与地面保持垂直,奇怪吗?为什么?到底隐藏着数学上的什么奥秘?由这些亲切真实情景,导出两个平面垂直的判定定理就水到渠成了。

篇11:高中数学如何教学设计

创设实验情境,培养数学创新能力和实践能力

高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。

此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。

巧设情境,增加学生的投入感

为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。 《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例:

要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所收集的数据展开讨论。其程序是:(1)作为家庭作业提出此问题;(2)学生自主进行统计活动;(3)请某学生在课堂上对结果做现场统计(列出统计表,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。

篇12:高中数学教学设计

一、学习目标与任务

1、学习目标描述

知识目标

(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

能力目标

(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

(B)通过知识的再现培养学生的创新能力和创新意识。

(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

德育目标

让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

2、学习内容与学习任务说明

本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

学习重点:圆锥曲线的第一定义和统一定义。

学习难点:圆锥曲线第一定义和统一定义的应用。

明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

二、学习者特征分析

(说明学生的学习特点、学习习惯、学习交往特点等)

l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在

l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

三、学习环境选择与学习资源设计

1.学习环境选择(打√)

(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)

(6)其它

2、学习资源类型(打√)

(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库

(5)案例库(6)题库(7)网络课程(8)其它

3、学习资源内容简要说明

(说明名称、网址、主要内容等)

《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)

用Flash5、几何画板和Authorware6制作可操作且具有交互性的网络课件放在专题网站里。

四、学习情境创设

1、学习情境类型(打√)

(1)真实性情境(√)(2)问题性情境(√)

(3)虚拟性情境(√)(4)其它

2、学习情境设计

真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。

问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。

虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。

五、学习活动的组织

1、自主学习设计(打√并填写相关内容)

(1)抛锚式

(2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。

使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

学生活动:分析、操作、协作讨论、总结、提交结论。

教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

(3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。

使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。

教师活动:讲解例题,总结点评学生做题过程中的问题。

(4)其它

2、协作学习设计(打√并填写相关内容)

(1)竞争

(2)伙伴(√)

相应内容:圆锥曲线的第一定义和统一定义

使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

分组情况:每组三人

学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。

教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

(3)协同(√)

相应内容:圆锥曲线定义的典型应用。

使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

分组情况:每组三人。

学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。

教师活动:总结点评学生做题过程中的问题。

(4)辩论

(5)角色扮演

(6)其它

4、教学结构流程的设计

六、学习评价设计

1、测试形式与工具(打√)

(1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它

2、测试内容

教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。

学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。

(附)圆锥曲线专题网站设计分析

(1)设计思路

(A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。

(B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。

(C)突出知识的'再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。

(D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。

(E)突出和各学科的联系:如斜抛运动和行星运动等等。

(F)强调分层次的教学:

如在知识应用中的配置不同层次的例题和练习:

(2)网站导航图

221381
领取福利

微信扫码领取福利

高中数学数列有哪些教学设计

微信扫码分享