人教版初二数学上册教案【精选5篇】
计算数学是数学的一个分支,研究数值计算方法和算法的理论和应用,用于解决复杂计算问题。这里给大家分享一些关于人教版初二数学上册教案,供大家参考学习。
人教版初二数学上册教案精选篇1
教学目标:
1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。
教学重点:
认识对称现象和轴对称图形的特点。
教学难点:
掌握识别轴对称图形的方法。
教具准备:
多媒体课件、实物图片等。
教学过程:
一、谈话引入,激发兴趣
1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。
2、从蝴蝶形状的风筝引出对称
二、合作探究,学习新知
1、观察图形,认识对称
(1)观察几幅对称图形,引导学生感悟对称。
(2)说一说生活中的对称现象
2、动手操作,认识轴对称图形
(1)猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。
(2)动手操作,剪出轴对称图形
师示范剪一件上衣的过程:折一折、画一画、剪一剪。
生动手剪出自己喜欢的轴对称图形。
交流展示学生的作品
(3)认识对称轴
看一看,摸一摸,说一说
画一画:师示范画出对称轴,然后学生自己画,再交流。
3、初步理解轴对称图形
(1)说一说轴对称图形的特点,初步理解轴对称图形。
(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。
(3)举一举身边的轴对称图形的例子。
三、巩固练习,拓展延伸
1、判一判:哪些是轴对称图形。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
四、课堂总结
通过这节课的学习,你有什么收获?
五、欣赏轴对称图形的美丽
人教版初二数学上册教案精选篇2
教学目标:
1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。
2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。
教学重点:
认识轴对称图形的基本特征。
教学难点:
能判断出轴对称图形。
教学教法:
观察、讨论法。准备一些轴对称图形的图片或剪纸(如窗花),也可用电脑上网收集各种各样轴对称的图片,让学生结合教材中的实物图进行观察、分析,找出这些图形有什么共同特点。
教学过程:
一、欣赏图片,建立表象
出示教材第28页单元主题图。
谈话:同学们,你们去过游乐场吗?这些玩具大家都玩过吗?那你对这个场景肯定不陌生了,你能给大家介绍下这个游乐场里有哪些好玩的项目吗?(请认识的学生介绍项目。)
小结:你瞧,这个游乐场可好玩了,高高的上空有缆车、摩天轮,下面还有小火车、滑滑梯、飞机,孩子们在这里玩得可高兴了,他们还在这儿放风筝呢,这里不仅好玩,还藏着好多数学知识,想不想认识它们呢?这节课我们就要在这样的游乐场里学习数学知识。
二、互动新授
1、小组合作,探究对称。
教师点击蜻蜓风筝和蝴蝶风筝的图形。
谈话:你看,这是在游乐场上的蝴蝶风筝和蜻蜓风筝,认真观察,它们在形状上有什么特征?(让学生用自己的语言说。)
教师小结并过渡:像这些物体,它们的左右两边是完全一样的,我们把这种现象称为对称,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。(教师出示叶子、蝴蝶和天安门图。)
师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。
学生自主交流。
谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)
2、教学对称
师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为对称,这些物体就是对称现象。
人教版初二数学上册教案精选篇3
一、教学目标
【知识与技能】
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
【情感态度价值观】
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
二、教学重难点
【教学重点】
运用平方差公式分解因式。
【教学难点】
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
三、教学过程
(一)引入新课
我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?
大家先观察下列式子:
(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=
他们有什么共同的特点?你可以得出什么结论?
(二)探索新知
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?
人教版初二数学上册教案精选篇4
教学目标
教学知识点
使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。
潜力训练要求。
透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。
情感与价值观要求。
透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。
教学重点
1、理解因式分解的好处。
2、识别分解因式与整式乘法的关系。
教学难点透过观察,归纳分解因式与整式乘法的关系。
教学方法观察讨论法
教学过程
Ⅰ、创设问题情境,引入新课
导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、讲授新课
1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。
993-99=99×98×100
2、议一议
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。
3、做一做
(1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
(2)根据上面的算式填空:
①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
④y2-6y+9=()2。⑤a3-a=()()。
定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
下面我们一齐来总结一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法与分解因式的联系和区别
ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。
6。例题下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、课时小结
本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。
人教版初二数学上册教案精选篇5
[教学目标]
知识与技能:
1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:
经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.
情感态度与价值观:
让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]
教学重点:多边形的内角和.的应用.
教学难点:探索多边形的内角和与外角和公式过程.
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决.
[教学方法]
本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:]
(一)探索多边形的内角和
活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?
多边形边数分成三角形的个数图形
内角和计算规律
三角形31180°(3-2)·180°
四边形4
五边形5
六边形6
七边形7
。。。。。。
n边形n
活动3:把一个五边形分成几个三角形,还有其他的分法吗?
总结多边形的内角和公式
一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)
例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?
(点评:四边形的一组对角互补,另一组对角也互补。)
(二)探索多边形的外角和
活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?
分析:(1)任何一个外角同于他相邻的内角有什系?
(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?
(3)上述总和与五边形的内角和、外角和有什么关系?
解:五边形的外角和=______________-五边形的内角和
活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?
也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。
结论:多边形的外角和=___________。
练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。
练习2:正五边形的每一个外角等于________,每一个内角等于_______。
练习3.已知一个多边形,它的内角和等于外角和,它是几边形?
(三)小结:本节课你有哪些收获?
(四)作业:
课本P84:习题7.3的2、6题
附知识拓展—平面镶嵌
(五)随堂练习(练一练)
1、n边形的内角和等于__________,九边形的内角和等于___________。
2、一个多边形当边数增加1时,它的内角和增加()。
3、已知多边形的每个内角都等于150°,求这个多边形的边数?
4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()
A:360°B:540°C:720°D:900°
5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?