欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 三角形全等的判定1

三角形全等的判定1

网友 分享 时间: 加入收藏 我要投稿 点赞

三角形全等的判定1

课题:全等三角形的判定(一)

教学目标:

1、知识目标:

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等.

2、能力目标:

(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2) 通过观察几何图形,培养学生的识图能力.

3、情感目标:

(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

教学重点:学会运用公理证明两个三角形全等.

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.

教学用具:直尺、微机

教学方法:自学辅导式

教学过程

1、公理的发现

(1)画图:(投影显示)

教师点拨,学生边学边画图.

(2)实验

让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作.

(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一.

应用格式:

强调:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.

2、公理的应用

(1)讲解例1.学生分析完成,教师注重完成后的总结.

分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由图形可以得到几个条件?

解:(略)

(2)讲解例2

投影例2:

例2如图2,AE=CF,AD∥BC,AD=CB,

求证:

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书.教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论.

 
  第 1 2 页  


221381
领取福利

微信扫码领取福利

三角形全等的判定1

微信扫码分享