圆柱的表面积教学实录(精选2篇)
圆柱的表面积教学实录 篇1
(一)知识目标
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力目标
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……
师:我坚信你们一定不会让老师失望的。
一、引入新课:
师:昨天我们认识了一个新的几何体朋友――圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知
师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积
师:怎样求圆柱的表面积呢?(学生分组讨论)
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)
1、圆柱的侧面积
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
2、圆柱的表面积
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积
师生小结:圆柱的表面积=底面积×2 侧面积
3、反馈练习:(略)
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)
圆柱的表面积教学实录 篇2
一、回忆旧知、引出新知。
师:前面我们认识了圆柱,请同学们回忆:圆柱的侧面展开图常见的有那几种?
生:长方形、正方形和平行四边形。
师:同意吗?很好!请说一说这些侧面展开图和原来的圆柱有什么联系?比如说长方形。
生:长方形的长就是圆柱地面的周长,长方形的宽就圆柱的高。
师:非常好!侧面展开图是正方形的圆柱有什么特点?
生:圆柱底面直径和高的长度相等。(后来自己修正为圆柱底面周长和高相等)
师:老师还想考考你们,你们还记得圆柱侧面计算公式吗?
生:s侧=ch=∏d=2∏r(教师板书)
师:你们会计算圆柱的侧面积吗?(会)
师出示圆柱形茶叶罐,你们能求出它的侧面积吗?请动手做一做。
生疑惑的看着老师:没有数据,怎么计算?
师:你们想知道什么数据?(半径、直径、底面周长和高)你们最想知道哪两个数据?(底面周长和高,因为计算简便些。)底面周长是31.4厘米,高是20厘米.
生独立计算,并汇报.
师:继续观察圆柱体茶叶罐,想一想工人师傅在制作它时是怎样下料的(它是由几部分组成的)?
二、自主探究新知。
师:你能求出这个圆柱体茶叶罐的表面积吗?(能)什么是圆柱体的表面积?
强调:圆柱侧面的面积加上两个底面的面积就是圆柱的表面积。
生独立计算,汇报,师板书。
31.4÷3.14÷2=5(厘米)553.142=157(平方厘米)157+31.420=785(平方厘米)
集体对答案.
完成做一做第2题,一生板演,集体对答案.
①23.14=6.28(厘米)生1:计算结果错了,283.6应该是282.6,最后结
②2÷2=1(厘米)果应该是288.98.
③113.14=3.14(平方厘米)师:计算可一定要细心.
④3.142=6.28(平方厘米)生2:②、③和④可以写在一起简便些.
⑤6.2845=283.6(平方厘米)生3:计算时可以先算245,再算3.1490.
⑥283.6+6.28=289.88(平方厘米)师:很好知道在计算中使用简便算法.还有吗?
生4:①和⑤也应该写在一起,不然⑤式中的6.28就容易使人产生误会.
师:太好了,看来我们在做这种题的时候一定要注意书写有条理.应分别先求出底面积和侧面积,再算出表面积.同学们已经会求圆柱的表面积,你们能自己总结出圆柱的表面积的计算公式吗?
生汇报,集体完善.s表=s侧+2s底
师:老师这儿还有一道很难的题想考考你们,请听题,在自己的练习本上把重点的条件记录下来.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
学生独立完成,并对照课本34面进行检查.
生质疑:为什么1821.2平方厘米不是约等于1800平方厘米.
师:请同学们自己看书找答案.
集体研究自学问题:
⑴求圆柱形水桶所需铁片的多少,实际是求水桶哪几个面的面积?为什么?
⑵什么叫进一法?
⑶为什么1821.2平厘米≈1900平方厘米呢?
小结:
师:这节课你有什么收获?(我知道了怎样计算圆柱体的表面积,还知道了什么是进一法.)下面我们再换一个问题:有什么疑惑的地方吗?
生1:求圆柱的侧面积算不算接头处重叠部分的面积.
师:在实际计算过程中我们一般不考虑接头处的面积.
生2:求无盖的铁桶的面积时,求不求里面的面积.
师:在计算中我们一般不考虑圆柱侧面的厚度,所以不计算里面的面积.
估一估:
师出示一个圆柱形塑料盒:请同学们估一估它的表面积?
无人举手,师出示刚研究的茶叶罐比较,再让学生估.
师请一没举手的生发言,并鼓励她:你没得出结果没关系,你能说一说你是怎样想的吗?
生:我想它的高是茶叶罐的1/2,也就是10厘米,底面和茶叶罐的底面一样大,直径是10厘米……
师:这个同学虽然没有估算出这个圆柱形盒子的表面积,但她告诉了我们估算的方法,我们可以先估出圆柱体的高,再估出圆柱体的底面直径,最后估算出表面积.估计出来的请举手.
生2:471平方厘米(结合茶叶罐的表面积计算出来的)
生3也是计算出来的.
师:这儿是要求大家估算,我们可以不用精确的计算,估出大约是多少平方厘米就可以了.
下课了,没办法老师只好带领大家估出大约是400平方厘米.