课题:§1.4线段、角的轴对称性(一)
时间(日期、课时):
教材分析:
学情分析:
教学目标:
1.经历探索线段的 轴对称性的过程,进一步体验轴对称的特征,发展空间观念;
2 .探索并掌握线段的垂直平分线的性质;
3.了解线段的垂直平 分线是具有特殊性质的点的集合;
4 在“操作---探究----归纳----说理”的过程中学会有条理地思考和表达,提高演绎推理能力。
探索并掌握线段的垂直平分线的性质
线段的垂直平分线是具有特殊性质的点的集合
教学准备
《数学学与练》
集体备课意见和主要参考资料
页边批注
加注名人名言
苏州市第二十六中学备课纸 第 页
教学过程
一.新课导入
问题1:线 段是轴对称图形吗?为什么?
探索活动:
活动一 对折线段
问题1:按要求对折线段后,你发现折痕与线段有什么关系?
问题2:按要求第二次对折线段后,你发现折痕上任一点到线段两端 点的距离有什么关系?
二.新课讲授
结论:1.线段是轴对称图形,线段的垂直平分线是它的对称轴;
2.线段的垂直平分线上的点到线段两端的距离 相等(投影)
例题:例1P21(投影)
这是一道文字描述的几何说理题,对大多数同学来说容易理解,但不易叙述,因此要做一定的分析,如:你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论?题中的已知条件和要说明的结论能画出图形来表示吗?根据图形你能说明道理吗?
活动二 用圆规找点
问题1:你能用圆规找出一点Q,使AQ=BQ吗?说出你的方法并画出图形(保留作图痕迹),还能找出符合上述条件的点M吗?
问题2:观察点Q、M,与直线l有什么关系?符合上述条件的点你能找出多少个?它们在哪里?
结论:到线段两端距离相等的点,在这条线段的垂直平分线上。
活动三 用直尺和圆规作线段的垂直平分线
1.按课本上的方法在书上作出线段的垂直平分线;
2.同位可画出不同位置的线段,相互作出线段的垂直平分线
加注名 人名言
苏州市第二十六中学备课纸 第 页
一. 巩固练习
P23 习题1、2、3
二.小结
结论:线段的垂直平分线是到线段两端距离相等的点的集合
这节课你学到了什么?
页边批注
加注名人名言
板书设计
作业设计
书p17 3、4
时间(日期、课时):
教材分析:
学情分析:
教学目标:
1.经历探索线段的 轴对称性的过程,进一步体验轴对称的特征,发展空间观念;
2 .探索并掌握线段的垂直平分线的性质;
3.了解线段的垂直平 分线是具有特殊性质的点的集合;
4 在“操作---探究----归纳----说理”的过程中学会有条理地思考和表达,提高演绎推理能力。
探索并掌握线段的垂直平分线的性质
线段的垂直平分线是具有特殊性质的点的集合
教学准备
《数学学与练》
集体备课意见和主要参考资料
页边批注
加注名人名言
苏州市第二十六中学备课纸 第 页
教学过程
一.新课导入
问题1:线 段是轴对称图形吗?为什么?
探索活动:
活动一 对折线段
问题1:按要求对折线段后,你发现折痕与线段有什么关系?
问题2:按要求第二次对折线段后,你发现折痕上任一点到线段两端 点的距离有什么关系?
二.新课讲授
结论:1.线段是轴对称图形,线段的垂直平分线是它的对称轴;
2.线段的垂直平分线上的点到线段两端的距离 相等(投影)
例题:例1P21(投影)
这是一道文字描述的几何说理题,对大多数同学来说容易理解,但不易叙述,因此要做一定的分析,如:你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论?题中的已知条件和要说明的结论能画出图形来表示吗?根据图形你能说明道理吗?
活动二 用圆规找点
问题1:你能用圆规找出一点Q,使AQ=BQ吗?说出你的方法并画出图形(保留作图痕迹),还能找出符合上述条件的点M吗?
问题2:观察点Q、M,与直线l有什么关系?符合上述条件的点你能找出多少个?它们在哪里?
结论:到线段两端距离相等的点,在这条线段的垂直平分线上。
活动三 用直尺和圆规作线段的垂直平分线
1.按课本上的方法在书上作出线段的垂直平分线;
2.同位可画出不同位置的线段,相互作出线段的垂直平分线
加注名 人名言
苏州市第二十六中学备课纸 第 页
一. 巩固练习
P23 习题1、2、3
二.小结
结论:线段的垂直平分线是到线段两端距离相等的点的集合
这节课你学到了什么?
页边批注
加注名人名言
板书设计
作业设计
书p17 3、4