欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 不等式的性质3

不等式的性质3

网友 分享 时间: 加入收藏 我要投稿 点赞

不等式的性质3

探究活动
    能得到什么结论
    题目 已知 且 ,你能够推出什么结论?
    分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。
    思路一:改变 的范围,可得:
    1. 且 ;
    2. 且 ;
    思路二:由已知变量作运算,可得:
    3. 且 ;
    4. 且 ;
    5. 且 ;
    6. 且 ;
    7. 且 ;
    思路三:考虑含有 的数学表达式具有的性质,可得:
    8. (其中 为实常数)是三次方程;
    9. (其中 为常数)的图象不可能表示直线。
    说明 从已知信息能够推出什么结论?这是我们经常需要思考的问题,这里给出的都是必要非充分条件,读者可以考虑是否能够写出充要条件;另外,运用推出关系的传递性,在推出结论的基础上进一步进行推理,还可得出很多结果,请读者考虑.
    探究关系式是否成立的问题
    题目 当 成立时,关系式 是否成立?若成立,加以证实;若不成立,说明理由。
    解:因为 ,所以 ,所以 ,
    所以 ,
    所以 或
    所以 或
    所以 或
    所以 不可能成立。
    说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出 , 必须同时大于1或同时小于1的结论。
    探讨增加什么条件使命题成立
    例 适当增加条件,使下列命题各命题成立:
    (1)若 ,则 ;
    (2)若 ,则 ;
    (3)若 , ,则 ;
    (4)若 ,则
    思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。
    解:(1)
    (2) 。当 时,
    当 时,
    (3)
    (4)
    引申发散对命题(3),能否增加条件 ,或 , ,使其成立?请阐述你的理由。
221381
领取福利

微信扫码领取福利

不等式的性质3

微信扫码分享