欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 绝 对 值 ―― 初中数学第一册教案(精选3篇)

绝 对 值 ―― 初中数学第一册教案(精选3篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

绝 对 值 ―― 初中数学第一册教案(精选3篇)

绝 对 值 ―― 初中数学第一册教案 篇1

  

  一、教学目标 :

  1.知识目标:

  ①能准确理解绝对值的几何意义和代数意义。

  ②能准确熟练地求一个有理数的绝对值。

  ③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

  2.能力目标:

  ①初步培养学生观察、分析、归纳和概括的思维能力。

  ②初步培养学生由抽象到具体再到抽象的思维能力。

  3.情感目标:

  ①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

  ②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

  二、教学重点和难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点 :绝对值定义的得出、意义的理解及求一个负数的绝对值。

  三、教学方法

  启发引导式、讨论式和谈话法

  四、教学过程 

  (一)复习提问

  问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

  (二)新授

  1.引入

  结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

  2.数a的绝对值的意义

  ①几何意义

  一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|。

  举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

  强调:表示0的点与原点的距离是0,所以|0|=0。

  指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

  ②代数意义

  把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

  用字母a表示数,则绝对值的代数意义可以表示为:  

  指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

  3.例题精讲

  例1. 求8,-8, ,- 的绝对值。

  按教材方法讲解。

  例2. 计算:|2.5|+|-3 |-|-3|。

  解:|2.5|+|-3 |-|-3|=2.5+3 -3=6-3=3

  例3. 已知一个数的绝对值等于2 ,求这个数。

  解:∵|2 |=2 ,|-2 |=2

  ∴这个数是2 或-2 。

  五、巩固练习

  练习一:教材P64  1、2,P66习题2.4  A组  1、2。

  练习二:

  1.绝对值小于4的整数是____。

  2.绝对值最小的数是____。

  3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

  六、归纳小结

  本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

  七、布置作业 

  教材P66  习题2.4  A组  3、4、5。

  

  一、教学目标 :

  1.知识目标:

  ①能准确理解绝对值的几何意义和代数意义。

  ②能准确熟练地求一个有理数的绝对值。

  ③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

  2.能力目标:

  ①初步培养学生观察、分析、归纳和概括的思维能力。

  ②初步培养学生由抽象到具体再到抽象的思维能力。

  3.情感目标:

  ①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

  ②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

  二、教学重点和难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点 :绝对值定义的得出、意义的理解及求一个负数的绝对值。

  三、教学方法

  启发引导式、讨论式和谈话法

  四、教学过程 

  (一)复习提问

  问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

  (二)新授

  1.引入

  结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

  2.数a的绝对值的意义

  ①几何意义

  一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|。

  举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

  强调:表示0的点与原点的距离是0,所以|0|=0。

  指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

  ②代数意义

  把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

  用字母a表示数,则绝对值的代数意义可以表示为:  

  指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

  3.例题精讲

  例1. 求8,-8, ,- 的绝对值。

  按教材方法讲解。

  例2. 计算:|2.5|+|-3 |-|-3|。

  解:|2.5|+|-3 |-|-3|=2.5+3 -3=6-3=3

  例3. 已知一个数的绝对值等于2 ,求这个数。

  解:∵|2 |=2 ,|-2 |=2

  ∴这个数是2 或-2 。

  五、巩固练习

  练习一:教材P64  1、2,P66习题2.4  A组  1、2。

  练习二:

  1.绝对值小于4的整数是____。

  2.绝对值最小的数是____。

  3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

  六、归纳小结

  本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

  七、布置作业 

  教材P66  习题2.4  A组  3、4、5。

绝 对 值 ―― 初中数学第一册教案 篇2

  绝对值(一)

  一、素质教育目标

  (一)知识教学点

  1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

  2.给出一个数,能求它的绝对值.

  (二)能力训练点

  在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

  (三)德育渗透点

  1.通过解释绝对值的几何意义,渗透数形结合的思想.

  2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

  (四)美育渗透点

  通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

  二、学法引导

  1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

  2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

  三、重点、难点、疑点及解决办法

  1.重点:给出一个数会求出它的绝对值.

  2.难点:绝对值的几何意义,代数定义的导出.

  3.疑点:负数的绝对值是它的相反数.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪(电脑)、三角板、自制胶片.

  六、师生互动活动设计

  教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

  七、教学步骤 

  (一)创设情境,复习导入  

  师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6, ,0及它们的相反数的点.

  学生活动:一个学生板演,其他学生在练习本上画.

  【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

  (二)探索新知,导入  新课

  师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

  学生活动:思考讨论,很难得出答案.

  师:在数轴上标出到原点距离是6个单位长度的点.

  学生活动:一个学生板演,其他学生在练习本上做.

  师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

  学生活动:产生疑问,讨论.

  师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

  [板书]2.4绝对值(1)

  【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,

  绝对值(一)

  一、素质教育目标

  (一)知识教学点

  1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

  2.给出一个数,能求它的绝对值.

  (二)能力训练点

  在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

  (三)德育渗透点

  1.通过解释绝对值的几何意义,渗透数形结合的思想.

  2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

  (四)美育渗透点

  通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

  二、学法引导

  1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

  2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

  三、重点、难点、疑点及解决办法

  1.重点:给出一个数会求出它的绝对值.

  2.难点:绝对值的几何意义,代数定义的导出.

  3.疑点:负数的绝对值是它的相反数.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪(电脑)、三角板、自制胶片.

  六、师生互动活动设计

  教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

  七、教学步骤 

  (一)创设情境,复习导入  

  师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6, ,0及它们的相反数的点.

  学生活动:一个学生板演,其他学生在练习本上画.

  【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

  (二)探索新知,导入  新课

  师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

  学生活动:思考讨论,很难得出答案.

  师:在数轴上标出到原点距离是6个单位长度的点.

  学生活动:一个学生板演,其他学生在练习本上做.

  师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

  学生活动:产生疑问,讨论.

  师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

  [板书]2.4绝对值(1)

  【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,

绝 对 值 ―― 初中数学第一册教案 篇3

  

  一、教学目标 :

  1.知识目标:

  ①能准确理解绝对值的几何意义和代数意义。

  ②能准确熟练地求一个有理数的绝对值。

  ③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

  2.能力目标:

  ①初步培养学生观察、分析、归纳和概括的思维能力。

  ②初步培养学生由抽象到具体再到抽象的思维能力。

  3.情感目标:

  ①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

  ②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

  二、教学重点和难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点 :绝对值定义的得出、意义的理解及求一个负数的绝对值。

  三、教学方法

  启发引导式、讨论式和谈话法

  四、教学过程 

  (一)复习提问

  问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

  (二)新授

  1.引入

  结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

  2.数a的绝对值的意义

  ①几何意义

  一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|。

  举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

  强调:表示0的点与原点的距离是0,所以|0|=0。

  指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

  ②代数意义

  把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

  用字母a表示数,则绝对值的代数意义可以表示为:  

  指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

  3.例题精讲

  例1. 求8,-8, ,- 的绝对值。

  按教材方法讲解。

  例2. 计算:|2.5|+|-3 |-|-3|。

  解:|2.5|+|-3 |-|-3|=2.5+3 -3=6-3=3

  例3. 已知一个数的绝对值等于2 ,求这个数。

  解:∵|2 |=2 ,|-2 |=2

  ∴这个数是2 或-2 。

  五、巩固练习

  练习一:教材P64  1、2,P66习题2.4  A组  1、2。

  练习二:

  1.绝对值小于4的整数是____。

  2.绝对值最小的数是____。

  3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

  六、归纳小结

  本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

  七、布置作业 

  教材P66  习题2.4  A组  3、4、5。

  

  一、教学目标 :

  1.知识目标:

  ①能准确理解绝对值的几何意义和代数意义。

  ②能准确熟练地求一个有理数的绝对值。

  ③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

  2.能力目标:

  ①初步培养学生观察、分析、归纳和概括的思维能力。

  ②初步培养学生由抽象到具体再到抽象的思维能力。

  3.情感目标:

  ①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

  ②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

  二、教学重点和难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点 :绝对值定义的得出、意义的理解及求一个负数的绝对值。

  三、教学方法

  启发引导式、讨论式和谈话法

  四、教学过程 

  (一)复习提问

  问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

  (二)新授

  1.引入

  结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

  2.数a的绝对值的意义

  ①几何意义

  一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|。

  举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

  强调:表示0的点与原点的距离是0,所以|0|=0。

  指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

  ②代数意义

  把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

  用字母a表示数,则绝对值的代数意义可以表示为:  

  指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

  3.例题精讲

  例1. 求8,-8, ,- 的绝对值。

  按教材方法讲解。

  例2. 计算:|2.5|+|-3 |-|-3|。

  解:|2.5|+|-3 |-|-3|=2.5+3 -3=6-3=3

  例3. 已知一个数的绝对值等于2 ,求这个数。

  解:∵|2 |=2 ,|-2 |=2

  ∴这个数是2 或-2 。

  五、巩固练习

  练习一:教材P64  1、2,P66习题2.4  A组  1、2。

  练习二:

  1.绝对值小于4的整数是____。

  2.绝对值最小的数是____。

  3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

  六、归纳小结

  本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

  七、布置作业 

  教材P66  习题2.4  A组  3、4、5。

221381
领取福利

微信扫码领取福利

绝 对 值 ―― 初中数学第一册教案(精选3篇)

微信扫码分享