七年级上册数学教案(5篇)
数学是一门研究数量、结构、空间和变化的学科,它运用逻辑和符号语言来推理、计算和解决问题。这里给大家分享一些关于七年级上册数学教案,供大家参考学习。
七年级上册数学教案(篇1)
教学目标和要求:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、 列代数式
(1)若正方形的边长为a,则正方形的面积是 ( )
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为( )
(3)若x表示正方形棱长,则正方形的体积是( )
(4)若m表示一个有理数,则它的相反数是( )
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 ( ) 元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、 请学生说出所列代数式的意义。
3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1)abc; (2)b2; (3)-5ab2; (4)y; (5)-xy2; (6)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
概念:
单项式的系数:单项式中的数字因数。
单项式的次数:在单项式中,所有字母的指数之和。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1; ② ; ③πr2; ④-ab。
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-1,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;
④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥πr2h的系数是。
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的`学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、作业布置:
课本p59:1,2。
2.1第2课时整式
教学内容
1、 多项式、整式的有关概念
2、正确区分单项式和多项式
教学目标
1、知识与技能
(1)学生理解多项式的概念.
(2)使学生能准确地确定一个多项式的次数和项数.
(3)能正确区分单项式和多项式.
2、过程与方法
通过区别单项式与多项式,培养学生发散思维.
3、情感、态度与价值观
在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.
教学重、难点
1.重点:多项式的概念及单项式的联系与区别.
2.难点及关键:多项式的次数的确定,多项式中各项的符号问题,以及多项式与单项式的联系与区别.
教学过程
一、创设情境,导入新课
师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.
1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.
, , ,2, , ,
2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.
学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.
【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容.
师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?
学生活动:同座进行讨论,然后选代表回答.
师:谁能把1题中不是单项式的式子读出来?(师做相应板书)
学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.
二、探索新知
师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.
学生活动:讨论归纳什么叫多项式.可让学生互相补充.
教师概括并板书
多项式:几个单项式的和叫多项式.
师:强调每个单项式的符号问题,使学生引起注意.
练习:下列代数式 , , , , , , , , 中,是多项式的有:
___________________________________________________________.
学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.
【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.
师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.
师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.
学生活动:同桌讨论, , , ,应怎样称谓,然后找学生回答.
师:给予归纳,并做适当板书:
学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.
根据学生回答,师归纳:
在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.
【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.
师:提出问题:对于多项式 是几次几项式呢?多项式的项数,各单项式的次数以及各项字母的指数各是多少呢?
学生活动:讨论 (学生应都能准确回答)
师归纳:各项字母的指数,发现多项式的排列是按照字母b的升幂来排列。指出多项式的表达必须按照某个字母的升幂或降幂来排列的。
则 还可以表示为 ,还有吗?
学生活动:小组讨论并展示各组的成果。
三、应用新知,解决问题
1、填表:
2、填空:
(1) 是___次___项式; 是___次____项式; 的常数项是___________.
(2) 是____次____项式,最高次数是_______,最高次项的系数是______,常数项是_______.
3、将下列多项式按照某个字母的升幂,降幂来排列。
学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.
【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.
归纳:单项式和多项式统称为整式.
说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做板书,使所学知识纳入知识系统.
四、应用拓展
1、下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.
学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏
【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.
2、单项式 , , 的和_________,它是____次_____项式.
3、 是_____次____项式, 是____次____项式,它的常数项_________.
4、 是_____次_____项式,最高次项是_______,最高次项的系数是_______,常数项是________.
5、 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).
学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.
师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.
【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识.
6、自编题目练习:
每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.
【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.
师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.
学生活动:学生边回答师边板书,然后学生讨论是否符合要求.
【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.
五、归纳小结
学生归纳,教师点评
“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.
第二课时作业设计
1.判断题
(1)-5不是多项式( )
(2) 是二次二项式( )
(3) 是二次三项式( )
(4) 是一次三项式( )
(5) 的最高次项系数是3( )
2.填空题
(1)把上列代数式分别填在相应的括号里
, , ,0, , ,
; ;
; ;
.
(2)如果代数式 是关于 的三次二项式则 , .
3、把下列各整式填入相应的圈里:
2m,xy3+1,2ab+6,ax2+bx+c,a,
单项式 多项式
4、下列多项式分别有几项?每项的系数和次数分别是多少?
(1) (2)
5、多项式 是 次 项式,最高次项是 ,常数项是 ,按字母y的降幂排列为 。
6、下列运算中,错误的是( )。
A. B.
C. D.
7、 是 次 项式,其中最高次项的系数是 。多项式2x2-3x+1是 次 项式。
8、多项式1-x3+x2是 ( )
A.二次三项式 B.三次三项式 C.三次二项式 D.五次三项式
9、多项式x3-2x2y-xy2-1的最高次项是 ( )
A.x3 B.2x2y C.-xy2 D.x3,-2x2y,-xy2
10、52x2-x是 ( )
A.一次二项式 B.二次二项式
C.四次二项式 D.五次二项式
11、多项式3xy2-2x2y+x3y3中,按x的指数从大到小各项依次是 ,按y的指数从小到大各项依次是________
12、当a= ,b= 时, 是关于x、y的三次二项式
13、若x+y=3 ,则4-2x-2y = 。
14、一个关于字母x、y的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?你能写出符合要求的一个多项式吗?
七年级上册数学教案(篇2)
师:在小学里,同学们已经学过数的加、减、乘、除四则运算。这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。自从引进负数后,数的范围就扩大到整个有理数。那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。(教师板书课题:有理数的加法)
请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。
生1:加数都是正数或都是负数。(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)
师:还有其他情况吗?
生2:正数与零,负数与零,或者两个都是零
师:同学们回答得很好。现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?①先向东走了5米,再向东走3米,结果怎样?
生3:向东走了8米
师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。(教师用投影仪显示图1)
②先向西走了5米,再向西走了3米,结果如何?
生5:向西走了8米。可以表示为:(-5)+(-3)=-8[教师板书]
(教师用投影仪显示图2)
③向东走了5米,再向西走了3米,结果呢?
生6:向东走了2米。可以表示为:(+5)+(-3)=+2[教师板
(教师用投影仪显示图3)
④先向西走了5米,再向东走了3米,结果呢?
生7:向西走了2米。可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)
⑤先向东走5米,再向西走5米,结果呢?
生8:回到原地位置。可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)
⑥先向西走5米,再向东走5米,结果呢?
生9:仍回到原地位置。可以表示为:(-5)+(+5)=0[教师板书]
(教师用投影仪显示图6)
师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。(教师用投影仪显示下面内容):
从河岸现在水位线开始,规定上升为正,下降为负:
①上升8cm,再上升6cm,结果怎样?②下降8cm,再下降6cm,结果怎样?
③上升6cm,再下降8cm,结果怎样?④下降6cm,再上升8cm,结果怎
⑤上升8cm,再下降8cm,结果怎样?⑥下降8cm,再上升0cm,结果怎样?
师:下面同学们分组讨论,互相订正。
教师公布正确答案:
①上升14cm。 [教师板书(+8)+(+6)=+14]
②下降14cm。 [教师板书(-8)+(-6)=-14]
③下降2cm。 [教师板书(+6)+(-8)=-2]
④上升2cm。 [教师板书(-6)+(+8)=+2]
⑤回到原水位线。 [教师板书(+8)+(-8)=0]
⑥在原水位下线下8cm。 [教师板书(-8)+0=-8]
师:通过以上两组题目,从两个有理数相加的过程中你发现了什么?请同学们发表演自己的观点,与本组同学交流。
小组1:我们这一小组同学发现了正数加正数结果是正数,负数加负数结果是负数,也就是说:同号两数相加,符号不变。
师:其他小组还有没有新的发现什么?
小组2:我们发现符号不同的两个有理数相加,结果的符号与最前面加数的符号一样。
师:这一小组的看法是否正确呢?
小组3:不正确。因为(+6)+(-8)=-2,(-6)+(+8)=+2,结果和符号与第一个加数的符号不一样。应改为:符号不同的两个有理数相加,结果的符号决定于加数中较大的数的符号。
小组4:这句话也不对,如(+3)+(-5)=-2中,和的符号是负的,但+3比-5大,应改为:和的符号与绝对值大的加数符号一样。师:还有没有不同意见?
小组5:我们这一小组有不同意见。符号不同的两个数相加还有一种可能是相反数的情况,结果为0与每个的数的符号都不一样。
师:观察仔细,很好。
师:刚才同学们只是发现了两个有理数相加,结果的符号问题,结果除了
符号部分外,另一部分称为结果的什么?
众生:结果的绝对值
师:结果的绝对值与加数绝对值又有何关系呢?
小组5:同号两数相加和的绝对值等于加数绝对值的和,异号两数相加和的绝对值等于较大绝对值减去较小绝对值。
师:请同学归纳,总结出有理数的加法规律。
小组6:同号两数相加,符号不变,并把绝对值相加;异号两数相加取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。
小组7:不对,异号两数相加应分两种情况。⑴绝对值不等的异号两数相加;⑵绝对值相等的异号两数相加。
师:很好!同学们已经感受到两个有理数相加的情况与小学加法要复杂一些,是否还有没有考虑到的情况呢?
小组8:有,一个数同0相加,仍是这个数。
师:全班同学共同说出有理数的加法法则。
教(板书):有理数加法法则:
①同号两数相加,取加数的符号,并把绝对值相加;
②异号两数相加,如果绝对值相等和为0;如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
③一个数同0相加,仍是这个数。
(点评:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的心态参与认知活动。因此本节课在教学设计上有如下闪光点:
1、通过回顾已具备的部分知识与技能,让学生产生一个暂时成功感和满足感,达到一个暂时的心理平衡。
2、以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。
3、再次以提问的形式,渗透分类的思想,将学生的思维导向分类探索的境地。旨在让学生的思维能圆润地过度到探索新知情境之中。
4、分类展示生活情境,放手让全体学生感受并探索,从而构建加法法则。)
七年级上册数学教案(篇3)
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。
3、 一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值.
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0;
(3) 如果a>0,b<0,|a|>|b|,那么a+b____0;
(4) 如果a<0,b>0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)
(3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)
(4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
七年级上册数学教案(篇4)
一.知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.
二.过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.
三.情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣.
教学重、难点与关键
1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量.
2.难点:正数、负数概念的综合运用.
3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量.
教具准备
投影仪
教学过程
四、复习提问课堂引入
1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?
2.如果用正数表示盈利5万元,那么-8千元表示什么?
五、新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.
2.20__年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.
写出这些国家20__年商品进出口总额的增长率.
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2.六个国家20__年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.
六、巩固练习
1.课本第5页的第8题.
点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.
2.补充练习.
若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?
解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处.
七、课堂小结
通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.
八、作业布置
课本第5页习题1.1第4、5、6、7题.
九、板书设计
正数和负数
七年级上册数学教案(篇5)
学习目标
1、了解负数是从实际需要中产生 的;
2、能判断一个数是正数还是负数,理解数0表示的量的意义;
3、会用正负数表示实际问题中具有相反意义的量.
重点难点
重点:正、负数的概念,具有相反意义的量
难点:理解负数的概念和数0表示的量的意义
教学流程
师生活动 时间 复备标注
一、导入新课
我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.
老师刚才的介绍中出现了一些数,它们是些什么数呢?
[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.
在生活中,仅有整数和分数够用了吗?
二、新授
1、自学章前图、第2 页,回答下列问题
数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?
什么是正数,什么是负数?
归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.
2、自学第23页,回答下列问题
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?
0有什么意义?
归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.
3、用正负数表示具有相反意义的量:自学课本34页
有哪些相反意义的量?
请举出你所知道的相反意义的量?
“相反意义的量”有什么特征?
归纳小结:一是意义相反,二是有数量,而且是同类量.
完成3页练习
4、例题
自学例题,完成 归纳。寻找问题。
完成4页练习
三、课堂达标练习
课本第5页练习1、2、3、4、7、8.
四、课堂小结
1、到目前为止,我们学习的数有哪几种?
2、什么是正数、负数?零仅仅表示“没有”吗?
3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用. 明确目标