欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 下学期 4.10 正切函数的图象和性质(通用2篇)

下学期 4.10 正切函数的图象和性质(通用2篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

下学期 4.10 正切函数的图象和性质(通用2篇)

下学期 4.10 正切函数的图象和性质 篇1

  4.10 正切函数的图象和性质

  第二课时

  (一)教学具准备

  投影仪

  (二)教学目标 

  运用正切函数图像及性质解决问题.

  (三)教学过程 

  1.设置情境

  本节课,我们将综合应用正切函数的性质,讨论泛正切函数的性质.

  2.探索研究

  (1)复习引入

  师:上节课我们学习了正切函数的作图及性质,下面请同学们复述一下正切函数 的主要性质

  生:正切函数 ,定义域为 ;值域为 ;周期为 ;单调递增区间 , .

  (2)例题分析

  【例1】判断下列函数的奇偶性:

  (1) ; (2) ;

  分析:根据函数的奇偶性定义及负角的诱导公式进行判断.

  解:(1)∵ 的定义域为 关于原点对称.

  ∴ 为偶函数

  (2)∵ 的定义域为 关于原点对称,且 且 ,

  ∴ 即不是奇函数又不是偶函数.

  说明:函数具有奇、偶性的必要条件之一是定义域关于原点对称,故难证 或 成立之前,要先判断定义域是否关于原点对称.

  【例2】求下列函数的单调区间:

  (1) ; (2) .

  分析:利用复合函数的单调性求解.

  解:(1)令 ,则

  ∵ 为增函数, 在 , 上单调递增,

  ∴ 在 ,即 上单调递增.

  (2)令 ,则

  ∵ 为减函数, 在 上单调递增,

  ∴ 在 上单调递减,即 在 上单调递减.

  【例3】求下列函数的周期:

  (1) (2) .

  分析:利用周期函数定义及正切函数最小正周期为 来解.

  解:(1)

  ∴周期

  (2)

  ∴周期

  师:从上面两例,你能得到函数 的周期吗?

  生:周期

  【例4】有两个函数 , (其中 ),已知它们的周期之和为 ,且 , ,求 、 、 的值.

  解:∵ 的周期为 , 的周期为 ,由已知 得

  ∴函数式为 , ,由已知,得方程组

  即 解得

  ∴ , ,

  [参考例题]求函数 的定义域.

  解:所求自变量 必须满足

  ( )

  ( )

  故其定义域为

  3.演练反馈(投影)

  (1)下列函数中,同时满足①在 上递增;②以 为周期;③是奇函数的是(      )

  A. B. C. D.

  (2)作出函数    ,且 的简图.

  (3)函数 的图像被平行直线_______隔开,与 轴交点的横坐标是__________,与 轴交点的纵坐标是_________,周期________,定义域__________,它的奇偶性是_____________.

  参考答案:(1)C.

  (2)

  如图

  (3) ( ); ,( );1; ; ;非奇非偶函数.

  4.总结提炼

  (1) 的周期公式 ,它没有极值,正切函数在定义域上不具有单调性(非增函数),了不存在减区间.

  (2)求复合函数 的单调区间,应首先把 、 变换为正值,再用复合函数的单调性判断法则求解.

  (四)板书设计 

  课题――

  例1

  例2

  例3

  例4

  [参考例题]

  演练反馈

  总结提炼

下学期 4.10 正切函数的图象和性质 篇2

  4.10 正切函数的图象和性质

  第一课时

  (一)教学具准备

  直尺、投影仪.

  (二)教学目标 

  1.会用“正切线”和“单移法”作函数 的简图.

  2.掌握正切函数的性质及其应用.

  (三)教学过程 

  1.设置情境

  正切函数是区别于正弦函数的又一三角函数,它与正弦函数的最大区别是定义域的不连续性,为了更好研究其性质,我们首先讨论 的作图.

  2.探索研究

  师:请同学们回忆一下,我们是怎样利用单位圆中的正弦线作出 图像的.

  生:在单位圆上取终边为 (弧度)的角,作出其正弦线 ,设 ,在直角坐标系下作点 ,则点 即为 图像上一点.

  师:这位同学讲得非常好,本节课我们也将利用单位圆中的正切线来绘制 图像.

  (1)用正切线作正切函数图像

  师:首先我们分析一下正切函数 是否为周期函数?

  生:∵

  ∴ 是周期函数, 是它的一个周期.

  师:对,我们还可以证明, 是它的最小正周期.类似正弦曲线的作法,我们先作正切函数在一个周期上的图像,下面我们利用正切线画出函数 , 的图像.

  作法如下:①作直角坐标系,并在直角坐标系 轴左侧作单位圆.

  ②把单位圆右半圆分成8等份,分别在单位圆中作出正切线.

  ③找横坐标(把 轴上 到 这一段分成8等份).

  ④找纵坐标,正切线平移.

  ⑤连线.

  图1

  根据正切函数的周期性,我们可以把上述图像向左、右扩展,得到正切函数 , 且 ( )的图像,并把它叫做正切曲线(如图1).

  图2

  (2)正切函数的性质

  请同学们结合正切函数图像研究正切函数的性质:定义域、值域、周期性、奇偶性和单调性.

  ①定义域:

  ②值域

  由正切曲线可以看出,当 小于 ( )且无限亲近于 时, 无限增大,即可以比任意给定的正数大,我们把这种情况记作 (读作 趋向于正无穷大);当 大于 且无限接近于 , 无限减小,即取负值且它的绝对值可以比任意给定的正数大,我们把这种情况记作 (读作 趋向于负无穷大).这就是说, 可以取任何实数值,但没有最大值、最小值.

  因此,正切函数的值域是实数集 .

  ③周期性

  正切函数是周期函数,周期是 .

  ④奇偶性

  ∵ ,∴正切函数是奇函数,正切曲线关于原点 对称.

  ⑤单调性

  由正切曲线图像可知:正切函数在开区间( , ), 内都是增函数.

  (3)例题分析

  【例1】求函数 的定义域.

  解:令 ,那么函数 的定义域是

  由    ,可得  

  所以函数 的定义域是

  【例2】不通过求值,比较下列各组中两个正切函数值的大小:

  (1) 与 ;

  (2) 与 .

  解:(1)∵

  又  ∵ ,在 上是增函数

  ∴

  (2)∵

  又   ∵ ,函数 , 是增函数,

  ∴   即 .

  说明:比较两个正切型实数的大小,关键是把相应的角诱导到 的同一单调区间内,利用 的单调递增性来解决.

  3.演练反馈(投影)

  (1)直线 ( 为常数)与正切曲线 ( 为常数且 )相交的相邻两点间的距离是(      )

  A. B. C. D.与 值有关

  (2) 是 的(       )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  (3)根据三角函数的图像写出下列不等式成立的角 集合

  ① ②

  参考答案:

  (1)C.注: 与 相邻两点之间距离即为周期长

  (2)D.注:由 ,但 ,反之 ,但

  (3)①

  ②

  4.总结提炼

  (1) 的作图是利用平移正切线得到的,当我们获得 上图像后,再利用周期性把该段图像向左右延伸、平移。

  (2) 性质.

  定义域

  值域

  周期

  奇偶性

  单调增区间

  对称中心

  渐近线方程

  奇函数

  ,

  (四)板书设计 

  课题……

  1.用正切线作正切函数图像

  2.正切函数的性质

  例1

  例2

  演练反馈

  总结提炼

221381
领取福利

微信扫码领取福利

下学期 4.10 正切函数的图象和性质(通用2篇)

微信扫码分享