欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 对数的运算性质

对数的运算性质

网友 分享 时间: 加入收藏 我要投稿 点赞 14
0
数学必修1:对数的运算性质
目的:(1)理解对数的运算性质;
(2)知道用换底公式能将一般对数转化成自然对数或常用对数;
(3)通过阅读材料,了解对数的发现历史以及对简 化运算的作用.
重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数
教学难 点:对数的运算性质和换底公式的熟练运用.
教学过程:
一、引入课题
1.对数的定义: ;
2.对数恒等式: ;
二、新课教学
1.对数的运算性质
提出问题:
根据对数的定义及对数与指数的关系解答下列问 题:
○1设 , ,求 ;
○2设 , ,试利用 、 表示 ? .
(学生独立思考完成解答,教师组织学生讨论评析,进行归纳总结概括得出对数的运算性质1,并引导学生仿此推导其余运算性质)
运算性质:
  如果 ,且 , , ,那么:
○1 ? + ;
○2 - ;
○3 .
(引导学生用自然语言叙述上面的三个运算性质)
学生活动:
○1阅读教材P75例3、4,;
设 计意图:在应用过程中进一步理解和掌握对数的运算性质.
○2完成教材P79练习1~3
设计意图:在练习中反馈学生对对数运算性质掌握的情况,巩固所学知识.
2. 利用科学计算器求常用对数和自然对数的值
设计意图:学会利用计算器、计算机求常用对数值和自然对数值的方法.
思考:对于本小节开始的问题中,可否利用计算器求解 的值?从而引入换底公式.
3.换底公式
( ,且 ; ,且 ; ).
学生活动
○1根据对数的定义推导对数的换底公式.
设计意图:了解换底公式的推导过程与思想方法,深刻理解指数与对数的关系.
○2思考完成教材P76问题(即本小节开始提出的问题);
○3利用换底公式推导下面的结论
(1) ;
(2) .
设计意图:进一步体会并熟练掌握换底公式的应用.
说明:利用换底公式解题时常常换成常用对数,但有时还要根据 具体题目确定底数.
4.课堂练习
○1教材P79 练习4
○2 已知
○3试求: 的值。(对换5 与2,再试一试)
○4
○5设 , ,试用 、 表示
三、归纳小结,强化思想
本节主要学习了对 数的运算性质和换底公式的推导与应用,在教学中应用多给学生创造尝试、思考、交流、讨论、表达的机会,更应注重渗透转化的思想方法.
四、作业布置
1.基础题:教材P86习题2.2(A组)第3~5、1 1题;
2.提高题:
○1设 , ,试用 、 表 示 ;
○2设 , ,试用 、 表示 ;
○3设 、 、 为正数,且 ,求证: .
3.课外思考题:
设正整数 、 、 ( ≤ ≤ )和实数 、 、 、 满足:
, ,
求 、 、 的值.
221381
领取福利

微信扫码领取福利

对数的运算性质

微信扫码分享

月会员
每天200次下载
2元/30天
直接下载
单次下载
0.1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭