欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 函数概念及性质

函数概念及性质

网友 分享 时间: 加入收藏 我要投稿 点赞 10
0
泗县三中教案、学案用纸
年级高一学科数学课题第二章函数概念及性质的复习
授课时间 2011年8月23
学习重点对函数有关概念整合
学习难点函数性质的应用
学习目标1.深刻理解函数的有关概念,理解对应法则、图象等有关性质,掌握函数的单调性和奇偶性的判定方法和步骤,并会运用解决实际问题.
2.利用数形结合研究二次函数的图像及性质
过程
一自主学习
①三要素:、、;
函数三中表示形式、、;
②单调性: 定义域内某区间D, , 时, ,则 的D上; 时, ,则 的D上.
③最大(小)值求法:、、等;
④奇偶性:对 定义域内任意x,
; .
特点:偶函数定义域关于,图象关于轴对称.
奇函数定义域关于,图象关于轴对称.
⑤幂函数
⑥映射
⑦二次函数图像与性质:




二师生互动
例1函数 的定义域
练一练
求函数 的定义域
例2例2已知函数 是偶函数,且 时, .
(1)求 的值;(2)求 时 的值;
(3)当 >0时,求 的解析式.
练一练
设函数 .
(1)求它的定义域;(2)判断它的奇偶性;
(3)求证: ;
(4)求证: 在 上递增.

三巩固练习
1..函数 的值域是()
A. B. C. D.
2.若函数 的值域是 ,则函数 的值域是()
A.[ ,3]B.[2, ]C.[ , ]D.[3, ]
3若f(x)=-x2+2ax与 在区间[1,2]上都是减函数,则a的值范围是()
A. B. C.(0,1)D.
4函数 的图像关于()
A. 轴对称B.直线 对称C.坐标原点对称D.直线 对称
5已知定义域为R的函数f(x)在 上为减函数,且y=f(x+8)函数为偶函数,则()
A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)
6设 ,则使函数 的定义域为R且为奇函数的所有 值为()
(A) (B) (C) (D)
7 在 上的最大值为,最小值为.

四课后反思

五课后巩固练习
1.已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在[-5,5]上是单调函数.
2.设 ,当 时, 恒成立,求实数a的取值范围

221381
领取福利

微信扫码领取福利

函数概念及性质

微信扫码分享

月会员
每天200次下载
2元/30天
直接下载
单次下载
0.1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭