欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 集合的表示方法

集合的表示方法

网友 分享 时间: 加入收藏 我要投稿 点赞
j.Co M 数学必修1:集合的表示方法
目标:掌握集合的 表示方法,能选择自 然语言、图形语言、集合语言描述不 同的问题.
重点、难点:用列举法、描述法表示一个集合.
教学过程:
一、复习引入:
1.回忆集合的概念
2.集合中元素有那些性质?
3.空集、有限集和无 限集的概念
二、讲述新课:
集合的表示方法
1、大写的字母表示集合
2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.
例如,24所有正约数构成的 集合可以表示为{1,2,3,4 ,6,8,12,24}
注:(1)大括号不能缺失.
(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3,…,100}
自然数集N:{1,2,3,4,…,n,…}
(3)区分a与{a} :{a}表示一个集合,该集合只有一个元素.a表示这个集合的一个元素.
(4)用列举法表示集合时不必考虑元素的前后 次序.相同的元素不能出现两次.
3、特征性质描述法:
在 集合I中,属于集合A的任意元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A可以表示如下:
{x∈Ip(x)}
例如,不等式 的解集可以表示为: 或 ,
所有直角三角形的集合可以表示为: 注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}
(2)注意区别:实数集,{实数集}.
4、文氏图:用一条封闭的曲线的内部来表示一 个集合.
例1:集合 与集合 是同一个集合 吗?
答:不是.
集合 是点集,集合 = 是数集。
例2:(教材第7页例1)
例3:(教材第7页例2)
课堂练习:
(1)教材第8页练习A、B
(2)习题1-1A: 1,
小结:
本节课学习了集合的表示方法(字母表示、列举法、描述法、文氏图共4种)
课后作业: 1,2

上一篇:四种命题

下一篇:函数的单调性与最值

221381
领取福利

微信扫码领取福利

集合的表示方法

微信扫码分享