欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 英语教案设计 > 《圆的面积》教学设计(精选17篇)

《圆的面积》教学设计(精选17篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

《圆的面积》教学设计(精选17篇)

《圆的面积》教学设计 篇1

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的.半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。

  (2)半径为2厘米的圆的周长与面积相等。

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

《圆的面积》教学设计 篇2

  教学目标:

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重点:

  利用圆面积计算公式正确计算圆的面积。

  教学难点:

  圆面积计算公式的推导。

  教具准备:

  等分圆教具。

  学具准备:

  分成十六等分的圆形纸片。

  教学过程:

  一.谈话导入新课

  同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。

  二.游戏激趣,理解圆的面积的概念。

  师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的快。师:你们有什么话想说吗?

  生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。

  师:现在大家知道男生为什么涂得慢呢?

  生:男同学涂的面积大。

  三.探究合作,推导圆的面积公式

  1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?

  生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?

  2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。

  3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的.内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。

  四.巩固新知,实践运用

  1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。

  2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?

  五.总结

  1、这节课你们有什么收获?

  2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。

《圆的面积》教学设计 篇3

  教学内容浙教版小学数学第十一册教材P141―143、例1

  教材分析《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。让学生用这种数学思想和方法来解决新的比较复杂的问题。教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的'面积公式推导出圆面积计算公式。

  学情分析在之前,学生已认识了各种平面图形的特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。

  教学目标

  1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能够利用圆面积公式进行计算。

  3.培养学生动手操作、观察分析、概括推理的能力。

  教学重点圆面积计算公式的推导和利用公式进行正确计算。

  教学难点极限思想的渗透与圆面积公式的推导过程。

  教学准备多媒体课件、 圆的平面图形1个、剪刀、直尺等

  教学过程

  一、创设情境

  1.播放录像:美丽的校园景色、各种形状的花坛。

  问:你能计算出它们的占地面积吗?

  2.媒体演示(从各种形状的花坛中提炼出下面的图形)。

  (1)学生说出这些图形的面积计算公式。

  (2)用什么方法推导出三角形面积计算公式的?

  教师板书:

  剪拼

  要学的图形 已学的图形

  转化

  3.媒体出示圆形。

  今天要学习圆的另一个知识,就是圆占平面的大小叫圆的面积。(请学生摸一摸哪里是圆的面积?)

  (板书课题:圆的面积)

  二、公式推导

  1.提出问题,制定方案

  (1)小组讨论:对于圆我们前面已经学习了什么?圆与以前我们研究的平面图形有什么不同?你想通过什么方法推导圆的面积公式?你认为你面临最大的困难是什么?

  (2)小组汇报:

  a.不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。

  b.面临的困难:如何曲线变直线。

  2.操作实验,分析问题

  (1)学生动手实验、剪拼图形。(允许学生根据发现的规律结合课本内容分组合作完成圆面积计算公式的推导)。

  (2)交流汇报。

  ①学生汇报剪拼过程,同时教师贴示。

  ②观察思考(教师有意选取一组剪拼成长方形的来交流)

  a.拼成的图形像什么图形?为什么说它像长方形而不是长方形?

  b.谁有办法把边变得更直些?把这个近似长方形变得更近似长方形?

  (教师媒体演示)

  c.把圆分成64等分后,拼接后的图形它的边会怎么样?图形会怎么样?

  d.生闭眼想象:如果把圆面等分成128份,256份……一直这样下去分成很多很多份,剪拼后的图形是什么情形?

  3.推导公式,解决问题

  (1)观察讨论

  当圆转化成近似长方形时,你们发现它们之间有什么联系?

  (2)学生填实验报告。

  (3)学生交流汇报推导过程。

  (4)观看课件演示过程,并请同桌两位同学互说一次。

  三、公式应用

  1.简介千古绝技:中国古代数学家的割圆术。

  公元3世纪我国数学家刘徽推算出圆周率时采用的"割圆术"。这种以直代曲,用有限逼近无限的数学思想就是我国古代数学家的首创……

  2.解答引入时花坛占地面积(若设计一个自动旋转喷灌装置应装在哪儿?)。

  3.根据下面所给的条件,求圆的面积。

  (1)直径10厘米(2)周长12。56

  (生独立解答,思考(2)面积和周长相等吗?做了这些题目你有什么体会?)

  四、课堂总结

  1.这节课你学会了什么?

  2.这节课你有什么感受?

  五、课外拓展

  1.媒体出示:学校现有一块长方形土地(长50米、宽25米),打算在上面建造一个圆形体育馆,最大可以占地多少平方米?

  2.已知正方形的面积是25平方厘米,求圆的面积。如图:

  3.一支森林考察队发现了一颗要3人才能合围的大树,现要算出这棵大树的横截面(圆形)面积,怎么办?(探讨哪一种测量法合理简洁)

  板书设计

  圆的面积

  圆所占平面的大小叫圆的面积。

  长方形的面积 = 长 × 宽

  圆的面积 = πr × r = πr2

  (周长的一半)

  剪拼

  要学的图形 已学的图形

  转化

《圆的面积》教学设计 篇4

  教学目的

  1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的 计算 公式;

  2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  教学重点 :圆面积计算

  教学难点 :公式以及推导。

  教学过程

  一、复习并引入课题。

  1.口算:2π 9.42÷π 12.56÷π

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是 6.2米,宽是 4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

  课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

  二、新课讲授

  1.圆的面积的含义。

  问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

  问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法――也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图) 问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

  教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  强调:如果分的等份越多所拼的图形就越接近长方形。

  问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

  引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

  学生独立完成圆面积公式的推导:

  总结:我们用S表示圆的面积,那么圆面积的大小就是: 再次强调:

  (1)拼成的图形近似于什么图形?

  (2)原来圆的面积与这个长方形的面积是否相等?

  (3)长方形的长相当于圆的哪部分的长?

  (4)长方形的宽是圆的哪部分?

  (5)用S表示圆的面积,那么圆的面积可以写成:S=πr2

  3.圆面积公式的应用。

  师:我们回头看刚才的问题,圆形花坛的直径是 20m,这个花坛占地多少平方米?

  学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

  (学生独立完成,教师巡视,对有困难的学生给予辅导。) 教师板演计算过程。

  出示例2:光盘的银色部分是一个圆环,内圆半径是 2cm,外圆半径是cm,它的面积是多少?

  问题:你能利用内圆好外圆的面积求出环形的面积吗?

  学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表

  回答问题,在黑板上演示计算方法,集体纠错。)

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径 10厘米。

  (1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  (2)强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

  四、课堂小结

  总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

  另外,我们在前面也学习了如何求圆的周长,需要注意的是:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

  (2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。 板书

  圆的面积

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr

《圆的面积》教学设计 篇5

  教学内容:

  新人教版数学六年级上册第67―68页,圆的面积。

  教学目标:

  1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。

  2、经历圆的面积计算公式的推导过程,体会转化的思想方法。

  3、培养认真观察的习惯和自主探究、合作交流的能力。

  教学重难点:

  1、运用圆的面积计算公式解决实际问题。

  2、理解圆的面积计算公式的推导过程。

  教学准备:多媒体课件

  教学方法:自主探究,合作交流

  教学过程:

  一、小测验:

  1、一个圆的直径是6厘米,这个圆的半径是厘米,周长是厘米。

  2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是米,半径是米。

  二、问题引入

  1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?

  2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)

  3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积――(板书课题:圆的面积1)

  三、探索新知

  (一)复习,平面图形面积的计算方法。

  (二)探索圆面积的计算方法

  1、我们一起来推导圆的面积公式吧!

  2、利用多媒体课件展示圆的面积公式的推导过程。

  (1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。

  (2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。

  3、在图形的拼凑与转化中,同时观察与思考以下问题。

  a、拼凑中,圆在转化成什么图形?

  b、长方形的长与圆的周长有什么关系?长方形的宽与圆的'半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?

  4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)

  因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)

  如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2

  5、学生齐读公式

  S= πr2

  教师强调r2= r × r(表示2个r相乘)

  (三)应用公式

  一个圆的半径是4厘米。它的面积是多少平方厘米?

  思考:

  1、本题已知什么,要求什么?已知圆的半径,求圆的面积。

  2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,

  3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。

  例

  1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?

  2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。

  3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。

  4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。

  (四)知识应用

  1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。

  课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。

  2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。

  3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。

  四、课堂总结:这节课,你有哪些收获?

  说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。

  五、作业布置:

  教材第71页,练习十五,第1题~第4题。

《圆的面积》教学设计 篇6

  教学内容:圆的面积。

  教学目标:

  1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3. 渗透转化的数学思想和极限思想。

  教学重点:正确计算圆的面积。

  教学难点:圆面积公式的推导。

  教具准备:多媒体课件,圆片。

  学具准备:把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

  教学设计:

  一、复习旧知,导入新课

  1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)

  2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

  3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

  3. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

  这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

  二、动手操作,探索新知

  1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

  (2)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  那么同学们想一想,圆可能转化为什么平面图形来计算呢?

  2. 推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  s=πr × r

  s=πr2

  师小结公式 s=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  3. 利用公式计算。

  (1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

  (2)出示例3,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成做一做的第1、2题。

  三、运用新知,解决问题

  1. 求下面各圆的面积,只列式不计算。(cai课件出示)

  2. 测量一个圆形实物的直径,计算它的周长及面积。

  3. 课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、布置作业

  板书设计:

  圆的面积

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  s=πr×r

  s=πr2

《圆的面积》教学设计 篇7

  【教学内容】:

  义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

  【教学目标】:

  知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

  过程与方法:

  (1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

  (2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

  情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

  【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

  【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

  【教具准备】:

  多媒体课件,圆片等。

  【教学方法】:自主探究法

  【教学过程】:

  一.以旧引新、导入新课

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下三角形的面积公式是怎样推导的?

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

  5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容――(板书课题:圆的面积)

  二、动手实践、探索新知

  1、补充感知、理解意义

  (1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

  (2)同学们再用手指一指自己带来的圆的面积。

  (3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

  2、比较猜测、探明方向

  (1)提问:猜猜圆面积的大小与什么有关?

  (2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的'面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

  (3)活动要求:折一折手中的圆片能折出什么图形?

  (4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

  ①圆和(近似的)长方形有什么关系?(形状变,面积相等)

  ②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

  (教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

  把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

  小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

  3、圆的面积计算公式的推导。

  小组合作讨论以下问题:

  a、拼成的近似长方形的面积和圆的面积有什么关系?

  b、长方形的长与圆的周长有什么关系?

  c、长方形的宽与圆的半径有什么关系?

  d、你能找出圆的面积计算方法吗?

  长方形的面积=长×宽,

  所以圆的面积=×=

  学生在小组内积极讨论,探究、分析,并将结果汇报。

  长方形的长是圆周长的一半,长方形的宽是半径(r)

  因为长方形的面积=长×宽

  所以圆的面积=∏r×r=r2

  齐读公式S=∏r2强调r2=r×r(表示2个r相乘)

  同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.

  三、巩固运用、形成技能

  1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?

  2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?

  (1)课件出示例1

  (2)学生独立审题

  (3)教师板演解答过程.

  3、求下面圆的面积r=3md=5cm

  ①学生独立完成

  ②集体核对时,强调要先算平方再算乘法。

  4、判断题(课件出示)

  5、拓展练习:机动题

  小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??

  四、课堂总结、深化认知:这节课,你有哪些收获?

  五、作业:练习十六2.4题.

  附:板书

  圆的面积

  长方形面积=长×宽

  ↓↓↓

  圆的面积=圆周长的一半×半径

  =∏r×r

  =∏r2

  例1:r:20÷2=10(m)

  S:3.14×102=314(m2)

  答:它的面积是314m2。

《圆的面积》教学设计 篇8

  教学理念:

  本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

  接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。

  教学目标:

  1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。

  2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。

  3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。

  4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。

  教学重点:

  运用圆的面积计算公式解决实际问题。

  教学难点:

  理解把圆转化为长方形推导出计算公式的过程。

  教学准备:

  多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。

  教学过程:

  一、创设问题情境,激发学生学习兴趣 。

  1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。

  2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的? (电脑课件演示)

  [设计意图:创设问题情境,启发学生回忆长方形、平行四边形、三角形和梯形周长和面积的概念。再利用电脑课件演示,让学生对已经学过的平面图形面积公式的推导有更清晰的'认识,从而激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。]

  二、合作交流,探究新知。

  1、出示圆:

  (1)让学生说出圆周长的概念,并指出来。

  (2)想一想:圆的面积指什么?让学生动手摸一摸。

  (揭示:圆所占平面的大小叫做圆的面积。)

  (3)对比圆的周长和面积,让学生感受他们的区别。

  同时引出课题――圆的面积。

  [设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。]

  2、推导圆面积的计算公式。

  (1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?

  (2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?

  [设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]

  (3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

  ①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?

  ②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?

  [设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]

  ③当圆转化成近似长方形时,你们发现它们之间有什么联系?

  课件演示:

  师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份又会是什么情形?

  ④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。

  [设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]

  (4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。

  ①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。

  ②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?

  ③学生讨论交流:长方形的长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:

  (5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!

  (6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?

  [设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]

  三、实践运用,巩固知识。

  1、已知圆的半径,求圆的面积。

  判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?

  =3.14×5×2=31.4(米)

  (学生先独立思考,再汇报交流,共同修改。)

  强调:半径的平方是指两个半径相乘。

  2、已知圆的直径,求圆的面积。(教学例1)

  ①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)

  ②学生汇报计算方法,要强调首先算什么?

  ③打开书本P68补充例1。

  3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)

  小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?

  ①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?

  ②根据圆的周长公式,师生间推导出求半径的计算方法。

  ③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。

  4、一个圆形溜冰场,半径30米。

  (1)这个溜冰场的面积是多少平方米?

  (2)沿着溜冰场的四周围上栏杆,栏杆长多少米?

  提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?

  [设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]

  四、总结评价,拓展延伸。

  1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?

  2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?

《圆的面积》教学设计 篇9

  揭示课题 师:前面我们认识了圆,学习了圆的周长,今天学习“圆的面积”。(教师板书,学生齐读)        师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?        生:这堂课我们要学习圆的面积是怎样求出来的。        生:学生圆的面积公式。        师:你们知道圆的面积公式后,你们还想到什么问题?        生:圆的面积公式根据什么推导出来的。        师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。(出示小黑板上的板书,学生齐读。)1.  计算圆的面积公式是什么?2.  这个公式是怎能样推导出来的?        [评:这种揭示课题,设计新颖,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标 。]导入  新课         师:现在请大家回忆一下,我们以前学过哪些基本图形的面积计算。        生:我们已经学过长方形、正方形、平行四边形、三角形、梯形的面积计算。(教师随着学生的回答,逐一用投影机放出上述图形)。        师:上面这五种图形和今天学习的圆形有什么显著的区别?        生:上面五个图形是由线段围成的,下面的圆形是由曲线围成的。        师:因为圆是由曲线围成的,计算圆的面积就比较困难了。能不能直接用面积单位去量呢?        生;它是圆的,用面积单位直接量是有困难的。        师:究竟用什么方法,请大家阅读课本,在课本中寻找答案。(学生阅读课本后,纷纷举手要求回答)        生:我们可以用图形转化的方法,求圆的面积。        师:这个办法很好。那么把圆形转化成什么图形呢?        生:长方形。        师:以前我们学习的哪些图形也是转化成长方形,来推导出面积计算公式。      (用投影机放出几种图形的转化图解,边出示,边讨论)       [评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]进行新课         师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?        生:不等。        师:为什么?        生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。        师:这个圆的面积比4 r2 小,等不等于3 r2 呢?        生:看上去比3 r2 又要大一些。        师:现在我们可以大致估计一下,这个圆面积要比3 r2 多一点,也就是r2 的3倍多一点。至于多多少,现在就来推导圆面积的计算公式。      (教师要求学生把预先准备好的一个圆分成16个相等的扇形,拼成一近似的长方形,学生可以一边看书,一边操作)        师:同学们观察一下,拼成的是什么图形?        生:近似于长方形。        师:说得很好,为什么说近似长方形,哪里不太像?        生:长边都是许多弧形组成,不是直线。        师:这里我们把圆分成16等分,还能分吗?        生:可以分成32等分、64等分、128等分……        师:究竟能分多少份呢?        生:无数份,可以永远分下去。        师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。师:把圆转化成长方形后,这个长方形的面积怎样计算?       (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)    长方形面积=长 ×宽  ↓ ↓      圆的面积=圆周长的一半×半径   ↓ = πr    ×  r   =πr2     师:现在可以回答前面提出的问题,圆面积是以半径为边长的正方形面积多少倍呢?        生: π倍。        生:约等于3.14倍。        师:刚才我们的猜想是正确的,圆面积的3 r2 多一点,现在推导出来的圆面积公式是πr2 ,也就是约等于3.14 r2 。    师:现在请同学们把圆面积公式的推导过程再完整地说一遍。      (学生回答略)    [评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]巩固新课         采用抢答比赛的形式巩固新课。把学生分成4组,每组的底分为100分,答对1题加10分,答错1题扣10分。抢答题用投影片逐题出现:       (1)计算圆的面积必需要具备哪些条件?       (2)一个圆的直径与正方形边长相等,圆和正方形哪个面积大?       (3)半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?       (4)圆能不能转化成三角形,来推导出求圆面积的公式?       (出示第4题前,教师宣布:第4题比较难,要先用学具摆,用相等的16个扇形先摆成三角形,然后观察,再写出推导过程。谁回答正确得30分。学生情绪高涨,都积极思考,抢着摆学具,抢着到黑板上写出推导的算式。)     三角开面积=  底 × 高 ÷ 2 = × 4r ÷ 2      = ×   4r ÷ 2     =2πr ×  r ÷ 2     =πr2       [评:用抢答形式巩固新课,设计新颖,激发学生兴趣,调动积极性,把课堂教学推向了高潮。特别第4题作为思考题,有助于发展学生的创造性思维。]课堂小结         师:这堂课大家学到了什么?有什么收获?        学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。        叮铃铃,下课钤响了,这堂课在轻松愉快的气氛中结束。        [评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

《圆的面积》教学设计 篇10

  本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到化。

  1、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

  如揭示圆的面积定义,。基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的*,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。

  2、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

  例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。

  教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。

  但是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应该改进的地方和努力的方向。

《圆的面积》教学设计 篇11

  一、创设情境,引入新课。

  1、课前谈话

  师:中国古代有许多聪颖机灵的少年儿童,曹冲就是其中的一位。“曹冲称象”的故事你们熟悉吗?谁愿意给大家讲一讲。(指名一位学生介绍故事简介)

  师:老师有个问题不明白,本来想知道大象的重量,曹冲为什么要称那些石头?

  生:石头的重量和大象的重量相等。

  师:你们说的这点很关键,必须保证石头和大象重量相等,这样称出的石头重量就是大象的重量。但是曹冲为什么不直接称大象呢?

  生:因为大象太重,不能直接用秤称出来。

  师:是啊,当时条件下,无法直接称出大象的重量,所以曹冲才想出用石头代替大象的方法。其实这也是我们数学学习中经常要用到的“转化”的方法,也就是当我们遇到新问题,不能直接解决时,可以把它转化成已有的知识和方法来解决的问题。

  2、复习铺垫

  师:现在请同学们回忆一下平行四边形的面积公式推导我们是把它转化成什么图形来计算的?

  生:是把平行四边形转化成长方形来计算的。把平行四边形沿着它的高剪下来,平移到另一边,这样就拼成了一个长方形。

  师:那么转化后的长方形的长与宽和平行四边形有什么关系?

  生:长方形的长相当于平行四边形的底,宽相当于平行四边形的高。

  师:棒极了!请同学们看大屏幕。(展示平行四边形转化成长方形的过程。)那大家还记不记得三角形、梯形它们是怎样转化的?(课件演示三角形、梯形转化成平行四边形的过程。)

  师:通过这些图形的转化,你发现了什么?

  生: 把图形转化成我们学过的图形。

  师:嗯,不错,是运用了转化的方法,看来这是个不错的方法,帮了我们很多忙!

  3、创设生活情境

  师:现在请同学们看大屏幕。请大家认真观察这幅图,说说从图中你发现的数学知识。(多媒体展示教材第16页上主题图。)

  生1:我发现了喷水头转动一周所走过的地方刚好是一个圆形。生2:喷射的水的距离相当于圆半径,也就是5米。生3:周长也就是喷水所走过的路线。生4:我补充一点,喷水头相当于这个圆的圆心。

  师:大家的发现真多,那么你们说说这个圆形的面积指的是那部分?

  生:被喷到水的草坪大小就是这个圆形的面积。

  师:也就是说圆所围成的平面的大小是圆的面积。(课件出示)那发现了这么多数学知识,你想提什么问题吗?

  生1:这个喷水头转动一周的周长是多少?生2:所喷洒的草坪面积是多少?也就是这个圆的面积是多少?

  4、导入新课

  师:我们已知道圆的面积是圆所围成平面的大小,那怎样计算圆的面积呢?这就是我们今天要学习的内容。(板书课题)

  二、引导探究,获取新知。

  1、估计圆的面积大小。(多媒体出示教材第16页“估一估”:半径是5米的圆的面积是多少?)师:请同学们认真看题目,与同桌说说你是如何估算的?

  生1:我是这样估计的,这个圆的面积比圆外的大正方形的面积小,而比圆内的小正方形的面积大,大正方形的面积是100平方米,小正方形的面积是50平方米,那么这个圆的面积大约在50~100平方米之间。生2:我先算了四分之一个大正方形的面积是25平方米,而圆外角落里的面积约为5平方米,那么四分之一个圆的面积约是20平方米,整个圆的面积大约就是80平方米。

  师:哦,你把范围缩小了,估得真不错!

  生:我是这样估算的,我先算了圆外四个角落的面积约为20平方米,用大正方形的面积100平方米减去20平方米等于80平方米。所以我估计这个圆的面积也是80平方米。

  师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果。如果我们遇到更大的圆,比操场还大的,那还能用这种方法吗?有什么更好的方法吗?

  生1:如果知道圆的面积计算公式就好了。生2:我想能不能把圆也转化成我们学过的图形来计算。

  师:对了,最直接最方便的就是用圆的面积计算公式来算。刚才怀洋同学说得很好!想把圆转化成我们学过的图形来计算,真不赖!接下来我们一起来探索圆的面积计算公式是怎样的?

  2、探索圆的面积计算公式

  (1)动手操作

  师:那么大家想把圆转化成什么图形呢?请拿出你们课前准备好的圆,和小组里的同学剪一剪,拼一拼。看看能拼成什么图形?

  (2)指名汇报,实图展示。

  师:通过刚才同学们的相互协作,相信你们一定取得了不小的成果。下面请小组派代表上台来展示一下所拼成的图形。

  生1:我们组把圆平均分成8份,拼成了个类似平行四边形的图形。生2:我们组是把圆平均分成16份,也拼成了个类似平行四边形的

  图形。

  师:现在请同学们观察一下,剪成8份和16份所拼成的图形有什么变化?

  生:分成16份的拼成的图形更像平行四边形。

  (3)操作反思

  师:你们有什么发现?

  生:要想拼成的图形更接近于平行四边形,可以把圆分的份数再多一些。

  师:也就是说如果我们继续分下去,分成32份、64份,那么拼成的图形就越接近于平行四边形。现在我们让电脑来帮忙继续分下去,看看是不是像我们想的那样。

  生:我发现了当把圆分成64份时拼成的图形完全可以算是个长方形了。

  师:你观察得真细致!那我们完全可以大胆猜测,如果我们继续分下去,拼成的图形就越接近于长方形了。通过剪拼,我们发现,圆曲线的边展开了,分的份数越多,展开来圆的边就越直。这就是化曲为直的方法。

  师:你们还有别的拼法吗?

  生1:我们小组把圆平均分成了16份,不过是把圆转化成了类似于三角形的图形。

  生2:我们小组也是把圆平均分成了16份,拼成的是个近似于梯形的图形。

  师:真不错!你们想到的方法真多!可以把圆转化成平行四边形、长方形,也可以转化成三角形、梯形。那我们今天就来探索把圆转化成平行四边形或长方形来推导它的面积公式。

  (4)思考讨论,观察汇报(课件呈现问题并讨论)

  师:圆与转化成的长方形或平行四边形之间有怎样的关系?

  生:通过刚才的动手剪拼,我认为把圆转化成长方形或平行四边形,它的形状变了,面积没变。其它小组的同学也是一样的看法吗?

  生1:我还想补充一点,它的周长也变了。生2:圆的面积和长方形的面积相等。

  生3:拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。(多指名几位同学回答,让展示图的同学上台拿着图边指边说, 最后师课件演示)

  师:你们能否用长方形的面积公式推导出圆的面积公式,并说说你的理由。

  生:因为长方形的长相当于圆的周长的一半,宽相当于半径,根据长方形的面积等于长乘宽,我可以得出,圆的面积等于圆周长的一半乘半径。

  师:你们听明白了吗?再请几位同学来说说。

  生:把圆转化成长方形,面积是相等的,长方形的长相当于圆周长的一半,宽相当于半径,所以圆的面积等于圆周长的一半乘半径。(圆周长的一半用字母表示,面积也用字母表示)

  师:说得真好!老师也听明白了。(教师根据学生汇报有序地整理板书。)

  板书: 长方形的面积 = 长 × 宽

  ↓ ↓ ↓

  圆的面积 = 圆周长的一半 × 半径

  s = πr(c/2) × r

  = πr2

  (5)小结

  师: 现在要求圆的面积是不是很简单了,知道什么条件就可以求出? 生:半径。

  师:那我们就利用这个公式回过头来算算刚才这个喷水头转动一周所喷洒的圆形草地的面积是多少?谁愿意上台来做做?(指名板演,讲评时说清算法。重点指出求圆面积只需要知道半径即可。)现在请大家来看看这段话,你能把它补充完整吗?(课件呈现问题和答案)

  今天学习了《圆的面积》,我知道了把一个圆平均分成若干份,可以拼成一个近似的长方形,长方形的长相当于圆的( ),宽相当于圆的( ),因为长方形的面积=长×宽,所以圆的面积公式表示为( )。

  三、练习应用,巩固新知。

  师:现在,你们想不想利用刚刚学到的知识解决一些实际问题呢?有信心吗?

  1“试一试”第一题指名板演,讲评时说清算法。2“试一试”第二、三题

  师:观察一下,这题和第1题有什么不一样的?谁愿意上台来做?

  (集体讲评,请板演的同学说说如何算的?)

  生1:图中只给出了直径,要求圆的面积首先得知道半径,所以我先求出圆的半径等于0.1分米,再根据圆的面积等于圆周率乘半径的平方求出圆的面积。生2:第三题已知周长,我也是先求半径。根据圆周长等于圆周率乘半径乘2,算出半径等于周长除以圆周率再除以2等于1米,再根据圆面积等于圆周率乘半径的平方等于3.14乘1的平方求出面积。

  四、全课总结。

  师:短短的40分钟很快就过去了,通过这节课的学习,你有什么收获?有什么不明白的地方?

  生1:我知道了圆的面积公式。生2:我知道了怎样求圆的面积。生3:我懂得了要求圆的面积需要先知道它的半径。生4:原来是把圆转化成长方形或平行四边形推出它的面积公式的。生5:我的收获是当我们碰到不能解决的问题时,可以把它转化成学过的知识来解决。

  师:大家的收获真不少!我们不仅学会了求圆的面积,而且运用转化的方法推导出了圆的面积公式,这是同学们的第一个了不起;另外,我们能从生活中发现数学问题并应用所学知识解决问题,这是第二个了不起!老师希望你们继续留心观察我们的生活,从生活中发现数学问题并想办法取解决它。

  五、布置作业:教材p19练一练第1~5题。

《圆的面积》教学设计 篇12

  教材分析

  圆的面积是六年级上册的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法――“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习平面图形的规律和方法。学习本节内容后,为后面学习扇形统计图、以及圆柱、圆锥打下基础;同时,圆在现实生活中的应用也非常广泛,能够运用所学知识解决实际问题。

  学情分析

  学生对圆的特征,多边形面积的计算已基本掌握,但对于像圆这样的曲线图形的面积,学生是第一次接触,如何把圆转化成直线图形具有一定的难度。学生对探究学习并不陌生,但在探究学习过程中,往往是盲目探究,因此,组织学习素材,让学生形成合理猜想,进行有方向的.探究也是教学中关注的问题。基于以上的思考,特制定以下教学目标:

  教学目标

  1、正确理解圆的面积的含义;理解和掌握圆的面积公式,会运用公式正确计算圆的面积。

  2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

  3、渗透转化的数学思想和极限思想。体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:运用公式正确计算圆的面积。

  教学难点:圆面积计算公式的推导过程。

《圆的面积》教学设计 篇13

  从心理学角度看,“猜想”是一项思维活动,是学生有方向的猜测和判断,包含了理性的思考和直觉的判断;从学生的学习过程来看,猜想应是学生有效学习的良好准备,它包含了学生从事新的学习或实践的知识准备、积极动机和良好情感。一说起“猜想”,人们马上就会联想到著名的“歌德巴赫猜想”。学生的学习过程,并非要出现像“歌德巴赫猜想”那样的著名推断,但应具有知识的“再发现”和“再创造”过程。培养学生的猜想意识,引导学生进行积极的猜想,正是培养学生进行知识再发现和再创造的良好开端。

  教学片段一

  在学习完“圆的面积”后,教师让学生做这样一道题:“有两块大小一样的正方形钢板,其中一块冲出4块大小一样的圆形钢片(如图1甲),另一块冲出9块大小一样的圆形钢片(如图1乙)。问哪一块钢板所剩下的脚料多?”立刻有学生大胆猜想:

  生:图1(甲)所剩下的脚料多一些,因为图1(甲)看起来空隙大。

  生:图1(乙)剩下的脚料多一些,因为图1(乙)的空隙多。

  可见学生这时的猜想是盲目的。教师对这些猜想没有简单地否定,而是让学生解决一个简单的问题(如图2),求正方形内切圆的面积占该正方形面积的百分之几?计算后得出,正方形内切圆的面积占该正方形面积的78.5%。这时再让学生猜想。

  生c:所剩下的脚料一样多。

  师:为什么?

  有一个学生将图1中的(甲)、(乙)两图添作辅助线,如图3所示。他说:“正方形1/4的78.5%再乘以4和正方形1/9的78.5%再乘以9其结果是一样的。”虽然表述不是很完整、到位,但能提出这样新的假设,充分体现了学生的创造潜能。最后通过计算验证,使学生享受到猜想的成功。

  教学片段二

  在一次课上做练习时,有一个平时就很爱动脑筋的学生突然说:“老师,我有一个奇怪的发现,我量了量桌子的长和宽,发现长是宽的1.6倍多一点,又量了量数学课本的长也是宽的1.6倍多一点,再量作业本结果也是一样的。我想,这里一定有数学问题。”

  一石激起千层浪,别的学生也动手量起来,不一会儿,有的学生说:“对,是这样。”有的学生反对:“这是偶然,铅笔盒、黑板就不是这样。”

  一会儿,教室里的争论声小了下来,学生的眼睛齐刷刷地望着老师。老师首先对那位学生说:“你善于观察,又勤于思考,很了不起。”接着,老师说:“想想生活中还有哪些长方形和你们的课桌比例差不多?”学生举出了生活中的许多例子。

  师:就拿电视屏幕为例吧,如果它很扁或很方,会有什么感觉?

  生:很有创意。

  生:好像不太方便,看起来有点怪,图像也就变形了。

  生:我知道了,按照一定的比例比较美观。

  生:他说得对,可铅笔盒只要能放进铅笔就行了,太宽反而不美观、不实用了,我觉得先要实用,才能美观。

  师:大家都很棒,我来给大家提供一个线索――“黄金分割”,我们查查资料,好吗?

  几天后,一张张资料卡放在教师手中。通过这次经历,学生享受到了猜想的成功,也进一步感受到了数学王国的瑰丽。

  评析

  数学方法理论的倡导者G・波利亚曾说过,在数学领域中,猜想是合理的、值得尊重的,是负责任的'态度。他认为,在有些情况下,教猜想比教证明更为重要。我们认为,猜想可分为三个层次:

  一、质疑――猜想的开始。

  让每个学生在已有的知识经验、能力水平和学习方法的基础上提出问题,并进行积极的猜想,这有助于提高学生的学习兴趣,活跃思维,促进智力的发展与提高。

  二、假设――猜想的深入。

  问题提出后,学生经过反复思考、联想、顿悟,结合已有的知识和生活经验提出自己的假设。假设,从思维角度讲,就是一种猜想。这样的思维过程,是充分发挥学生创新能力和主体意识的过程。

  三、实践――猜想的验证。

  只有猜想没有行动,那只能是空想。把猜想与探索实践紧密结合,可以产生猜想的良性循环。

  不同的学生会有不同的猜想,但都是学生的主动思维的过程,都包含着创新因素。“猜想”是一项思维活动,包含了理性的思考和直觉的判断。因此学生的猜想可能是经过反复思考的,符合逻辑的,但更可能是稚嫩无据的“异想天开”。不管是哪一种情况,教师都应给予鼓励,精心保护学生积极猜想的精神,并引导他们享受猜想的成功体验,更好地发挥他们的创造力。

《圆的面积》教学设计 篇14

  学会反思方能成长,以下是关于五年级数学《圆的面积》教学反思,欢迎大家阅读参考!

  《圆的面积》教学反思

  《圆的面积》是小学数学教学中的一个难点,又是学习圆柱与圆锥的基础,圆面积公式的推导过程运用了“极限”的思想和方法,这对小学生来讲是深奥难懂的。教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形(主要是长方形)来计算面积,引导学生自主推导出圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂问题的策略。

  学习此知识之前,学生已初步认识了圆,理解了面积的含义,并且掌握了长方形、正方形、平行四边形、三角形、梯形的面积计算公式的推导过程,因此学习圆的面积公式推导过程时只需要教师启发、点拨学生依然从转化的思想入手,将圆转化为已学过的图形进行计算,然后通过等量代换得到圆面积公式。因此,新课内容必须从贴近学生生活的情境出发,激发学生的探究欲望,降低内容的抽象性,引导学生用转化的方法推导出圆面积的计算公式。

  本节课,我认为我主要有以下几个亮点:

  一、重视自主探究,发挥学生主体性。

  在教学“圆的面积”计算公式推导时,我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,有效地体验从猜想——实践验证——分析——归纳总结的科学探究问题的方法。看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。例如:想一想以前咱们学过了哪些图形的面积计算公式?(长方形、正方形、平行四边形、三角形、梯形)这些面积公式都是怎样推导出来的?(生边回答课件边演示平行四边形、三角形、梯形的面积公式推导过程)从这些面积公式推导过程中你得到了什么启发?(都先转化成长方形,可否将圆也转化成长方形呢?)怎么转化?(生讨论,看书等后回答:把圆分成若干等份,拼成长方形),你想分成多少等份?(16等份)多点行不行?(众说不一,同桌讨论后回答:行)为什么呢?(分的等份越多,拼成的图形就越接近长方形)如果越少呢?(拼成的图形就越不象长方形)如果分成两等份呢?(用两个半圆试拼)(那就拼不成长方形了)现在我们将这个圆分成16等份,请两个同学上台拼一拼,大家首先看圆周围的黑线表示圆的什么?(周长)这条红线呢?(半径)这两条线很顽皮,在拼的过程中要跟我们玩捉迷藏,一定要盯住它们各藏到哪儿了?(学生操作)他们先把两个半圆展开,然后犬牙交错地拼在一起,成了什么图形啦?(长方形)是精确的长方形吗?(不是,是近似的)为什么?(上下两条长边上有许多小包包)对,两条长边不是直的,是波浪形的,怎样才能使它接近一条直线呢?(把圆分的等份越多,就越接近直线)好,现在我们就将圆分成32等份拼一下,为了便于观察,我们用课件来演示。同样用黑线表示周长,红线表示半径。也学这两位同学这样拼起来,成了一个什么图形?(几乎是一个长方形了)这样一拼之后,什么变了?什么没变?(形状变了,面积没变)现在大家找一找,黑线和红线各藏到哪里去了?(黑线分成了两段,到了长方形的上下两边,红线到了长方形的右边)各成了长方形的什么呀?(表示圆周长的一半成了长方形的长,表示半径的红线成了长方形的宽)(老师对应地板书)长方形的面积等于长乘以宽,那么圆的面积等于什么呀?(学生互相合作,推导出圆面积公式)(老师对应板书并熟读公式)好,现在大家用学具拼一拼,看还能拼出什么学过的图形?(可以拼出近似三角形、平行四边形、梯形)真不错,拼成的 这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨。

  二、运用多媒体手段,激发学生学习兴趣。

  在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣,为学生今后圆锥,圆柱奠定了有力的基础。

  三、练习坡度适当,由浅入深地掌握知识。

  课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

  课后设想:

  圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。但回头想想,也可以把圆的面积分两课时来上,一课时是让学生操作,圆可以转化成什么图形?第二课时才深入地研究如何推导圆面积的公式,这样费时多些但对学生的能力开拓会更有好处。

《圆的面积》教学设计 篇15

  教材分析:

  圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。教材将理解“化曲为直”的转化思想贯穿在活动之中。通过一系列的活动将新的数学思想纳入到学生原有的认知结构之中,从而完成新知的建构过程。学好这节课的知识,对今后进一步探究“圆柱圆锥”的体积起着举足轻重的作用。

  【教学目标】

  1、 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、 能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  教学重点】探索并掌握圆的面积公式。

  【教学难点】探索推导圆的面积公式,体会“化曲为直”思想。

  【教具准备】投影仪,多煤体课件,圆形纸片。

  【学具准备】圆形纸片。

  【教学设计】

  一、 创设情境。提出问题

  (投影出示p16中草坪喷水插图)这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、 探究思考。解决问题

  1、估计圆面积大小

  师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)------

  2、 用数方格的方法求圆面积大小

  ① 投影出示p16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  ② 指明反馈估算结果,并说明估算方法及依据。

  1、 根据圆里面的正方形来估计

  2、 用数方格的方法来估计。

  三、 探索规律

  1、 由旧知引入新知

  师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?(学生回答,教师订正。那么圆形的面积可由什么图形面积得来呢。

  2、 探索圆面积公式

  师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

  指名汇报(学生在说的同时教师注意板书)

  请大家来观察一下刚才拼成的哪个图形更接近长方形呢?[等分为32份的更接近长方形。]

  想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?[等分的份数越多,就越接近长方形。]

  观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

  因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

  因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

  用字母怎么表示圆面积公式呢?

  s=∏rr还可以写作s=∏r2

  师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

  3、 应用圆面积公式

  根据下面的条件,求圆的面积。

  r=6厘米 d =0.8厘米 r=1.5分米

  师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。(学生独立解答,指名回答)

  四:拓展应用

  习题设计:

  1.填空:

  (1)圆的周长计算公式为(     ),圆的周长计算公式为(     )。

  (2)一个圆的半径是3厘米,求它的周长,列式(   ),求它的面积,列式(   )。

  (3)一个圆的周长是18.84分米,这个圆的直径是(  )分米,面积是(  )平方分米。

  2.判断:

  (1)半径是2厘米的圆,周长和面积相等(  )[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。]

  (2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14x1.52=3.14x3=9.42平方厘米。(  )。[此题在计算1.52的时候把1.52看作1.5x2,而1.52=1.5x1.5]

  (3)直径相等的两个圆,面积不一定相等。(   )

  (4)一个圆的半径扩大3倍,面积也扩大3倍。(   )

  (5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。(  )

  3.实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?

  4.要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

  (1)可测圆的半径,根据s=πr2求出面积。

  (2)可测圆的直径,根据s=π(d/2)2求出面积。

  (3)可测圆的周长,根据s=π・(c/2π)2求出面积。

  实践练习:

  圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。]

《圆的面积》教学设计 篇16

  本课学习是在学习了圆的周长的基础上进行的,通过引导学生回忆所学三角形、梯形等面积计算的推导过程,特制定如下目标。

  1. 理解圆的面积的含义。

  2. 经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

  3. 培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力,收集处理简单数据的能力。

  说教材内容及重点、难点:

  本课教学采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形,分割的份数越多,拼得的图形就越接近于长方形,然后由长方形的面积计算公式推导出圆面积的计算公式S=πr2。

  教学重点:理解和掌握圆的面积计算公式。

  教学难点:经历圆的面积公式的推导过程,把圆转化成近似的长方形,然后由长方形的面积计算公式得出圆的面积计算公式。

  说教学对象:

  把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形的面积时,已经用过这种方法,如求三角形面积时,是把三角形通过重合、旋转、平移之后,拼成等底等高的平行四边形,然后由平行四边形面积计算公式得出三角形面积计算公式。因此,教师在教学中首先应激发学生的学习兴趣,采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形,根据长方形的面积计算公式得出圆的面积计算公式。

  说教学策略及教法:

  1.根据学生的心理特征,创设问题情境,激发学生探究的欲望。

  2.教师先边演示边引导学生学习“圆的面积计算公式”方法的推理过程,再让学生充分利用“几何画板”学习资源,以自主、探究、合作与交流的方式巩固所学圆的面积计算公式的推导过程及计算一些具体圆的面积。

  3.教师设计并利用几何画板课件,进行例题学习过程与方法的演示,以激发学生的思维,提高学习的效果。

  说网络教学环境:

  本节课的网络环境为多媒体网络教室、因特网、校园网。利用因特网、校园网让学生检索圆的面积计算公式的推导过程,拓宽学生的视野,丰富学生的课外知识,设计多媒体教学软件,通过教室内部网络让学生使用,提高学生的解题能力。

  说教学过程:

  一、 复习引入

  在复习引导中我们首先让学生回想一下什么叫面积,理解平面图形的面积,然后让学生回忆长方形的面积是怎样计算的,为学习圆的面积公式作铺垫,同时回忆平行四边形、三角形和梯形等图形的面积计算公式的推导过程。

  教师注意必要的复习铺垫,直观的演示,激发学生积极主动地学习。引导学生复习长方形的面积计算公式,渗透了要求圆的面积也需从转化的思想放手。

  二、 新知学习

  1. 理解圆的面积的概念。

  根据前面的复习引导学生猜想一下圆的面积的概念,并指出圆的面积是指哪一部分,出示不同大小的圆,在教师的演示下让学生直观感知圆面积的大小。

  2. 探索圆的面积计算公式。

  通过几何画板的直观演示,教师拉动圆的直径,学生进行观察,圆的面积的大小可能与它的`什么有关(直径)。那与半径又有什么样的关系呢?学生进行猜想。

  ① 出示一个正方形,并在正方形内画一个以正方形边长为直径的圆,让学生比较两个图形的面积有什么关系?(3 r2<圆的面积<4 r2)

  ② 这样设计让学生观察到圆的面积与以它直径为边长的正方形面积的关系,引导学生将圆分割后拼成一个长方形。

  ③ 向学生提出问题:我们应把圆转化成一个什么样的图形呢?

  学生进行自学书本有关内容,探索如何把一个圆转化成已学过的图形,并且思考圆与转化后的图形有什么关系,在这里渗透转化的思想。

  ④ 学生自学以后,探讨:这样看来为什么只能得到近似的平行四边形,能拼成一个标准的长方形吗?学生相互讨论,应该如何操作。只有分的份数越多,才能越接近长方形,此时教师演示转化的过程,学生观察。

  ⑤ 根据演示,探究圆的面积计算公式的推导过程,从而得出圆的面积计算公式:S=πr2

  3. 根据圆的面积计算公式,让学生想一想要求圆的面积,必须知道什么条件?(直径、半径或周长)

  4. 根据圆的面积计算公式,出示例3,学生进行自学,相互讨论,计算出圆的面积。

  三、 练习反馈

  在练习反馈中设计了基本练习与综合练习。基本练习主要是完成书本练习二十四的第1―5题的有关内容,加强学生对圆面积的认识,并能熟练计算圆的面积。综合练习是培养学生的综合运用能力,让学生根据不同的条件求出阴影部分的面积,这样既培养学生的解题能力,又发展了学生的思维,提高学生的创新能力。

  四、 反思体验

  让学生共同回忆本节课所学的内容,学生讲讲自己有什么收获?以及如何计算圆的面积?推导圆的面积公式用了什么方法。

《圆的面积》教学设计 篇17

  本节课我教授的内容是六年级上册第五单元第三小节的内容圆的面积,本课是第一课时。教学目标是:让学生经历探索圆的面积的计算公式,掌握圆面积的`计算公式,能够利用公式进行简单的圆面积的计算。激发学生参与教学活动的兴趣,培养学生分析、观察和概括能力,渗透转化的数学思想。

  在教学中我把重点放在了圆面积公式的推导上,我首先通过正方形面积引入,唤起学生的旧知,再引入长方形、平行四边形、三角形等面积公式,期中平行四边形和三角形都是通过割补、拼凑等方法引入的,自然引入到圆面积的推导上,我充分运用教具,让学生经历动手探索,归纳概况的学习过程,推导出圆面积的计算公式,最后相机出示例题,让学生运用所学的知识进行解决实际问题,提高运用意识。

  本节课不足之处是学生自己制作的教学用具操作不充分,课堂练习不够,尤其是部分学生对半径的平方理解计算上不到位,导致在练习中出错,在课后中应加强辅导和训练。

  年11月18日

221381
领取福利

微信扫码领取福利

《圆的面积》教学设计(精选17篇)

微信扫码分享