欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 九年级数学下册《不共线三点确定二次函数的表达式》教学教案(湘教版)

九年级数学下册《不共线三点确定二次函数的表达式》教学教案(湘教版)

网友 分享 时间: 加入收藏 我要投稿 点赞 17
1

九年级数学下册《不共线三点确定二次函数的表达式》教学教案(湘教版)

【知识与技能】
1.掌握用待定系数法列方程组求二次函数解析式.
2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.
【过程与方法】
通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.
【情感态度】
通过本节教学,激发学生探究问题,解决问题的能力.
【教学重点】
用待定系数法求二次函数的解析式.
【教学难点】
灵活选择合适的表达式设法.
一、情境导入,初步认识
1.同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?
学生回答:
2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?
二、思考探究,获取新知
探究1  已知三点求二次函数解析式讲解:教材p21例1,例2.
【教学说明】让学生通过例题讲解归纳出已知三点坐标求二次函数解析式的方法.
探究2  用顶点式求二次函数解析式.
例3  已知二次函数的顶点为a(1,-4)且过b(3,0),求二次函数解析式.
【分析】已知抛物线的顶点,设二次函数的解析式为y=a(x-h)2+k.
解:∵抛物线顶点为a(1,-4),∴设抛物线解析式为y=a(x-1)2-4,∵点b(3,0)在图象上,∴0=4a-4,∴a=1,∴y=(x-1)2-4,即y=x2-2x-3.
【教学说明】已知顶点坐标,设顶点式比较方便,另外已知函数的最(大或小)值即为顶点纵坐标,对称轴与顶点横坐标一致.
探究3  用交点式求二次函数解析式
例4(甘肃白银中考) 已知一抛物线与x轴交于点a(-2,0),b(1,0),且经过点c(2,8).求二次函数解析式.
【分析】由于抛物线与x轴的两个交点为a(-2,0),b(1,0),可设解析式为交点式:y=a(x-x1)(x-x2).
解:a(-2,0),b(1,0)在x轴上,设二次函数解析式为y=a(x+2)(x-1).又∵图象过点c(2,8),∴8=a(2+2)(2-1),∴a=2,∴y=2(x+2)(x-1)=2x2+2x-4.
【教学说明】因为已知点为抛物线与x轴的交点,解析式可设为交点式,再把第三点代入可得一元一次方程,较一般式所得的三元一次方程简单.

221381
领取福利

微信扫码领取福利

九年级数学下册《不共线三点确定二次函数的表达式》教学教案(湘教版)

微信扫码分享

月会员
每天200次下载
2元/30天
直接下载
单次下载
0.1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭