欢迎您访问教学资源网(www.jxzy.wang)

证明

网友 分享 时间: 加入收藏 我要投稿 点赞

证明

 
§1.1、你能证明它们吗(一)

一、教学目标:

1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

3、结合实例体会反证法的含义。

二、教学重点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。

教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。

三、教学方法:观察法。

四、教学过程:

复习:

1、什么是等腰三角形?

2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

3、试用折纸的办法回忆等腰三角形有哪些性质?

新课讲解:

在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。

同学们和我一起来回忆上学期学过的公理

w        本套教材选用如下命题作为公理 :

w        1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

w        2.两条平行线被第三条直线所截,同位角相等;

w        3.两边夹角对应相等的两个三角形全等; (sas)

w        4.两角及其夹边对应相等的两个三角形全等; (asa)

w        5.三边对应相等的两个三角形全等; (sss)

w        6.全等三角形的对应边相等,对应角相等.

由公理5、3、4、6可容易证明下面的推论:

推论 两角及其中一角的对边对应相等的两个三角形全等。(aas)

证明过程:

已知:∠a=∠d,∠b=∠e,bc=ef

求证:△abc≌△def

证明:∵∠a+∠b+∠c=180°,

∠d+∠e+∠f=180°

(三角形内角和等于180°)

∴∠c=180°-(∠a+∠b)

∠f=180°-(∠d+∠e)

又∵∠a=∠d,∠b=∠e(已知)

∴∠c=∠f

又∵bc=ef(已知)

∴△abc≌△def(asa)

(这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。)

议一议:

(1)还记得我们探索过的等腰三角形的性质吗?(教师提出问题,并利用等腰三角形纸片帮议助学生回忆。学生充分讨论问题1,借助等腰三角形纸片回忆有关性质。)

(2)你能利用已有的公理和定理证明这些结论吗?

(等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。)

定理:等腰三角形的两个底角相等。

这一定理可以简单叙述为:等边对等角。

已知:如图,在abc中,ab=ac。

求证:∠b=∠c

(引导学生证明定理“等腰三角形的两个底角相等”,重点引导学生做辅助线,将等腰三角形分成两个全等的三角形: 我们刚才利用折叠的方法说明了这两个底角相等。实际上,折痕将等腰三角形分成了两个全等三角形。能否通过作一条线段,得到两个全等的三角形,从而证明这两个底角相等呢?)

证明:取bc的中点d,连接ad。

2页,当前第112
221381
领取福利

微信扫码领取福利

证明

微信扫码分享