欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 垂直于弦的直径(一)

垂直于弦的直径(一)

网友 分享 时间: 加入收藏 我要投稿 点赞

垂直于弦的直径(一)

教学目标:1、使学生通过观察实验理解圆的轴对称性;2、掌握垂径定理,理解垂径定理的推证过程;3、能初步应用垂径定理进行计算和证明.4、进一步培养学生观察问题、分析问题和解决问题的能力.教学重点: 垂径定理及应用.教学难点:垂径定理的证明.教学过程:一、新课引入:请同学们回答下列问题:1、如果一个图形沿着一条直线折叠,直线的两旁的部分能够互相重合,那么这个图形叫做________;那么这条直线叫做________.2、等腰三角形是轴对称图形吗?3、“圆”是不是轴对称图形?它的对称轴是什么?教师利用提问1.,2.的形式,复习轴对称图形的概念.提问3.的目的是引出本节课的第一个知识点.在学生回答后,引导学生观察电脑演示将圆对折的情形.教师讲解将圆沿着一条直径对折,你观察到了什么情况?这时学生回答,教师板书.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.接着电脑继续演示,教师讲解:

由图7-9(1)中cd为⊙o的直径;变到图7-9(2)中在⊙o上任意取一点a;再变到图7-9(3)从点a作直径cd的垂线交⊙o于另一个交点b.这时我们可以看出图(3)中的点b与点a是否是对称点呢?a、b是关于什么对称.教师进一步提出当直径cd垂直于弦ab,将能得到什么结论呢?这就是本节学习的内容.“7.3垂直于弦的直径(一)”.教师这样引入课题的目的,使学生从认识上初步完成实验――观察――感性――理性的认识过程.逐步学会从实践中引入、从现象中抽象、从事实中概括,从而激发学生的学习动机.二、新课讲解:为了使学生进一步通过实验的观察,很快地概括出本课的教学内容,由图7-9(1)可知cd所在直线是⊙o的对称轴;到图7-9(2)从⊙o上取一点a,过点a作直径cd的垂线交⊙o于点b,得到图7-9(3),这时沿着cd折叠,引导学生观察重合部分,学生纷纷猜想结论.通过实验――观察――猜想获得感性认识.这个实验结论是否正确,还需要证明.学生带着一种好奇心,积极主动参与到证明这个结论中去.学生回答证明过程,教师板书.已知:在⊙o中,cd是直径,ab是弦,cd⊥ab,垂足为e.求证:ae=eb, = , = .证明:连结oa,ob,则oa=ob.又cd⊥ab,∴直线cd是等腰△oab的对称轴,又是△o的对称轴.所以沿着直径cd折叠时,cd两侧的两个半圆重合,a点和b点重合,ae和be重合, 、 分别和 、 重合.因此,ae=be, = , = .从而得到圆的一条重要性质.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条垂径定理是由演示实验――观察――感性――理性的全过程.为了使学生能够真正理解垂径定理,引导学生分析垂径定理的题设和结论,加深对定理的认识并强化用数学表达式表示出来:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.〈2〉                  〈1〉〈3〉                              〈4〉〈5〉把直径化分为(1);把垂直于弦化分为(2);把平分弦化为(3);平分优弧化为(4);平分劣弧化分为(5).

2页,当前第112
221381
领取福利

微信扫码领取福利

垂直于弦的直径(一)

微信扫码分享