欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 九年级上册《二次函数应用》导学案(通用2篇)

九年级上册《二次函数应用》导学案(通用2篇)

网友 分享 时间: 加入收藏 我要投稿 点赞 13
0

九年级上册《二次函数应用》导学案(通用2篇)

九年级上册《二次函数应用》导学案 篇1

  《二次函数应用》导学案

  学习目标

  1.  掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识解决实际问题

  2.  将实际问题转化为数学问题,并运用二次函数的知识解决实际问题。

  学习重点和难点

  运用二次函数的知识解决实际问题

  课前准备:

  学习过程:

  一、自主尝试

  1.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是(  )

  a.  b.   c.   d.

  2.九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高 m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的线路为抛物线,建立如图的平面直角坐标系,设篮球出手后离地的水平距离为xm,高度为ym,求y关于x的函数解析式。

  二、互动探究

  例1  如图,某喷灌设备的喷头b高出地面1.2m,如果喷出的抛物线形水流的水平距离x(m)与高度y(m)之间的关系为二次函数y=a(x-4)2+2.

  求:(1)二次函数的解析式

  (2)水流落地点d与喷头底部a的距离(精确到0.1)

  例2:某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.

  (1)建立如图的平面直角坐标系,问此球能否准确投中?

  (2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?

  练习:

  1.       小明是学校田径队的运动员,根据测试资料分析,他掷铅球的出手高度为2米,如果出手后铅球在空中飞行的水平距离与高度之间的关系式为,那么小明掷铅球的出手点与铅球落地点之间的水平距离大约是多少?

  2.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度om为12米. 现以o点为原点,om所在直线为x轴建立直角坐标系.

  (1)直接写出点m及抛物线顶点p的坐标;    (2)求这条抛物线的解析式;

  (3)若要搭建一个矩形“支撑架”ad- dc- cb,使c、d点在抛物线上,a、b点在地面om上,则这个“支撑架”总长的最大值是多少?

  三、反馈检测:评价手册

  四、课外作业:同步练习

九年级上册《二次函数应用》导学案 篇2

  在期末复习期间,我们在区教研室和学校领导的指导下,通过“初备――交流――复备――再交流”,完成了《二次函数应用》的复习。通过本次活动,使我受益匪浅。

  一、集体智慧胜于个人智慧。备课期间大家各显神通,献计献策。

  二、备学生要胜于备教材。学生是学习的主体,老师是学习的主导。教师要因人而异,因材施教,方能取得较好的课堂效果。

  三、化难为易,化繁为简。教师在课堂上应该起到把握重点,分解难点的作用。因此,备课时将问题设置成问题串,为学生搭建解决问题的台阶。

  四、勤于思考,善于总结。在大量的习题中,在众多的方法下,指导学生梳理知识,归纳题型,提炼方法,总结规律。以提高学生的分析问题解决问题的能力。

221381
领取福利

微信扫码领取福利

九年级上册《二次函数应用》导学案(通用2篇)

微信扫码分享

月会员
每天200次下载
2元/30天
直接下载
单次下载
0.1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭