欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 比例线段(精选12篇)

比例线段(精选12篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

比例线段(精选12篇)

比例线段 篇1

  一、教学目标

  1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

  2.掌握比例基本性质和合分比性质.

  3.通过通过的应用,培养学习的计算能力.

  4.通过比例性质的教学,渗透转化思想.

  5.通过比例性质的教学,激发学生学习兴趣.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点 比例性质及应用.

  2.教学难点 正确理解成比例线段及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤

  【复习提问】

  1.什么是线段的比?

  2.已知 这两条线段的比是 吗,为什么?

  【讲解新课】

  1.比例线段:见教材P203页。

  如:见教材P203页图5-2。

  又如:

  即a、b、c、d是成比例线段。

  注:①已知 问这四条线段成比例吗?

  (答:成比例。 ,这里与顺序无关)。

  ②若已知a、b、c、d是成比例线段,是指 不能写成 (在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

  板书教材P203页比例线段的一些附属概念。

  2.比例的性质:

  (1)比例的基本性质:如果 ,那么 。

  它的逆命题也成立,即:如果 ,那么 。

  推论:如果 ,那么 。

  反之亦然:如果 ,那么 。

  ①基本性质证明了“比例式”和“等积式”是可以互化的。

  ②由 ,除可得到 外,还可得到其它七个比例式。即由一个等积式 ,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式: 。注意区别与联系。

  ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

  ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

  (2)合比性质:如果 ,那么

  证明:∵ ,∴ 即:

  同理可证: (找学生板演)

  (3)等比性质:如果

  那么

  证明:设 ;则

  ∴

  等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

  例1(要求了解即可)

  (1)已知: ,求证: 。

  证明:∵ ,∴

  “通法”:∵ ,∴ 即

  (2)已知: ,求证: 。

  方法一:

  方法二:

  (1)÷(2)得:

  【小结】

  (1)比例线段的概念及附属概念。

  (2)比例的基本性质及其应用。

  八、布置作业 

  (1)求

  ① ② ③

  (2)求下列各式中的x

  ① ② ③ ④

  九、板书设计

  比例线段(二)

  1.比例线段:

  教师板书定义

  ………

  比例线段的附属概念

  ………

  2.比例的性质

  (1)比例基本性质

  …………

  注意:(1)

  ②

  ③

  3.课堂练习

比例线段 篇2

  教学建议

  知识结构

  重难点分析

  本节的重点是线段的比和的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

  本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

  教法建议

  1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

  2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

  3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

  4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

  5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

  教学设计示例1

  (第1课时)

  一、教学目标 

  1.理解线段的比的概念.

  2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

  3.通过线段的比的有关计算,培养学习的计算能力.

  4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点  两条线段比的概念.

  2.教学难点   正确理解两条线段的比及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤 

  【复习提问】

  找学生回答小学学过的比、比的前项和后项的概念.

  (两个数相除又叫做两数的比,记作 或a:b,其中a叫比的前项,b叫比的后项)

  【讲解新课】

  把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

  等.

  可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

  一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项.

  关于两条线段比的概念,教学中要揭示它的实质,即 表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

  就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

  (l)两条线段的比就是它们的长度的比.

  (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

  (3)两条线段的比值总是正数.(并不都是正数)

  (4)除了a=b之外, . 与 互为倒数.

  例1  见教材P202.

  讲解完例1后:

  (l)提问学生AB是 的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解.

  (2)给出:比例尺= ,就例1的图上,若图距是8cm的两地,实际距离是多少?

  另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

  例2  见教材P202.

  讲解完例2后:

  (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

  (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为 .

  常识2:等腰直角三角形三边(从小到大)的比为1:1: .

  学生掌握了这些常识可有两点好处:

  ①知道例2中“ ”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

比例线段 篇3

  一、教学目标 

  1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

  2.掌握比例基本性质和合分比性质.

  3.通过通过的应用,培养学习的计算能力.

  4.通过比例性质的教学,渗透转化思想.

  5.通过比例性质的教学,激发学生学习兴趣.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点 比例性质及应用.

  2.教学难点  正确理解成比例线段及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤 

  【复习提问】

  1.什么是线段的比?

  2.已知 这两条线段的比是 吗,为什么?

  【讲解新课】

  1.比例线段:见教材P203页。

  如:见教材P203页图5-2。

  又如:

  即a、b、c、d是成比例线段。

  注:①已知 问这四条线段成比例吗?

  (答:成比例。 ,这里与顺序无关)。

  ②若已知a、b、c、d是成比例线段,是指 不能写成 (在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

  板书教材P203页比例线段的一些附属概念。

  2.比例的性质:

  (1)比例的基本性质:如果 ,那么 。

  它的逆命题也成立,即:如果 ,那么 。

  推论:如果 ,那么 。

  反之亦然:如果 ,那么 。

  ①基本性质证明了“比例式”和“等积式”是可以互化的。

  ②由 ,除可得到 外,还可得到其它七个比例式。即由一个等积式 ,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式: 。注意区别与联系。

  ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

  ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

  (2)合比性质:如果 ,那么

  证明:∵ ,∴ 即:

  同理可证: (找学生板演)

  (3)等比性质:如果

  那么

  证明:设 ;则

  ∴

  等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

  例1(要求了解即可)

  (1)已知: ,求证: 。

  证明:∵ ,∴

  “通法”:∵ ,∴ 即

  (2)已知: ,求证: 。

  方法一:

  方法二:

  (1)÷(2)得:

  【小结】

  (1)比例线段的概念及附属概念。

  (2)比例的基本性质及其应用。

  八、布置作业 

  (1)求

  ① ② ③

  (2)求下列各式中的x

  ① ② ③ ④

  九、板书设计 

  比例线段(二)

  1.比例线段:

  教师板书定义

  ………

  比例线段的附属概念

  ………

  2.比例的性质

  (1)比例基本性质

  …………

  注意:(1)

  ②

  ③

  3.课堂练习

比例线段 篇4

  一、教学目标 

  1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

  2.掌握比例基本性质和合分比性质.

  3.通过通过的应用,培养学习的计算能力.

  4.通过比例性质的教学,渗透转化思想.

  5.通过比例性质的教学,激发学生学习兴趣.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点 比例性质及应用.

  2.教学难点  正确理解成比例线段及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤 

  【复习提问】

  1.什么是线段的比?

  2.已知 这两条线段的比是 吗,为什么?

  【讲解新课】

  1.比例线段:见教材P203页。

  如:见教材P203页图5-2。

  又如:

  即a、b、c、d是成比例线段。

  注:①已知 问这四条线段成比例吗?

  (答:成比例。 ,这里与顺序无关)。

  ②若已知a、b、c、d是成比例线段,是指 不能写成 (在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

  板书教材P203页比例线段的一些附属概念。

  2.比例的性质:

  (1)比例的基本性质:如果 ,那么 。

  它的逆命题也成立,即:如果 ,那么 。

  推论:如果 ,那么 。

  反之亦然:如果 ,那么 。

  ①基本性质证明了“比例式”和“等积式”是可以互化的。

  ②由 ,除可得到 外,还可得到其它七个比例式。即由一个等积式 ,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式: 。注意区别与联系。

  ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

  ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

  (2)合比性质:如果 ,那么

  证明:∵ ,∴ 即:

  同理可证: (找学生板演)

  (3)等比性质:如果

  那么

  证明:设 ;则

  ∴

  等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

  例1(要求了解即可)

  (1)已知: ,求证: 。

  证明:∵ ,∴

  “通法”:∵ ,∴ 即

  (2)已知: ,求证: 。

  方法一:

  方法二:

  (1)÷(2)得:

  【小结】

  (1)比例线段的概念及附属概念。

  (2)比例的基本性质及其应用。

  八、布置作业 

  (1)求

  ① ② ③

  (2)求下列各式中的x

  ① ② ③ ④

  九、板书设计 

  比例线段(二)

  1.比例线段:

  教师板书定义

  ………

  比例线段的附属概念

  ………

  2.比例的性质

  (1)比例基本性质

  …………

  注意:(1)

  ②

  ③

  3.课堂练习

比例线段 篇5

  一、教学目标

  1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

  2.掌握比例基本性质和合分比性质.

  3.通过通过的应用,培养学习的计算能力.

  4.通过比例性质的教学,渗透转化思想.

  5.通过比例性质的教学,激发学生学习兴趣.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点 比例性质及应用.

  2.教学难点 正确理解成比例线段及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤

  【复习提问】

  1.什么是线段的比?

  2.已知 这两条线段的比是 吗,为什么?

  【讲解新课】

  1.比例线段:见教材P203页。

  如:见教材P203页图5-2。

  又如:

  即a、b、c、d是成比例线段。

  注:①已知 问这四条线段成比例吗?

  (答:成比例。 ,这里与顺序无关)。

  ②若已知a、b、c、d是成比例线段,是指 不能写成 (在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

  板书教材P203页比例线段的一些附属概念。

  2.比例的性质:

  (1)比例的基本性质:如果 ,那么 。

  它的逆命题也成立,即:如果 ,那么 。

  推论:如果 ,那么 。

  反之亦然:如果 ,那么 。

  ①基本性质证明了“比例式”和“等积式”是可以互化的。

  ②由 ,除可得到 外,还可得到其它七个比例式。即由一个等积式 ,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式: 。注意区别与联系。

  ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

  ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

  (2)合比性质:如果 ,那么

  证明:∵ ,∴ 即:

  同理可证: (找学生板演)

  (3)等比性质:如果

  那么

  证明:设 ;则

  ∴

  等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

  例1(要求了解即可)

  (1)已知: ,求证: 。

  证明:∵ ,∴

  “通法”:∵ ,∴ 即

  (2)已知: ,求证: 。

  方法一:

  方法二:

  (1)÷(2)得:

  【小结】

  (1)比例线段的概念及附属概念。

  (2)比例的基本性质及其应用。

  八、布置作业 

  (1)求

  ① ② ③

  (2)求下列各式中的x

  ① ② ③ ④

  九、板书设计

  比例线段(二)

  1.比例线段:

  教师板书定义

  ………

  比例线段的附属概念

  ………

  2.比例的性质

  (1)比例基本性质

  …………

  注意:(1)

  ②

  ③

  3.课堂练习

比例线段 篇6

  教学建议

  知识结构

  重难点分析

  本节的重点是线段的比和的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

  本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

  教法建议

  1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

  2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

  3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

  4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

  5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

  教学设计示例1

  (第1课时)

  一、教学目标 

  1.理解线段的比的概念.

  2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

  3.通过线段的比的有关计算,培养学习的计算能力.

  4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点  两条线段比的概念.

  2.教学难点   正确理解两条线段的比及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤 

  【复习提问】

  找学生回答小学学过的比、比的前项和后项的概念.

  (两个数相除又叫做两数的比,记作 或a:b,其中a叫比的前项,b叫比的后项)

  【讲解新课】

  把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

  等.

  可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

  一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项.

  关于两条线段比的概念,教学中要揭示它的实质,即 表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

  就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

  (l)两条线段的比就是它们的长度的比.

  (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

  (3)两条线段的比值总是正数.(并不都是正数)

  (4)除了a=b之外, . 与 互为倒数.

  例1  见教材P202.

  讲解完例1后:

  (l)提问学生AB是 的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解.

  (2)给出:比例尺= ,就例1的图上,若图距是8cm的两地,实际距离是多少?

  另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

  例2  见教材P202.

  讲解完例2后:

  (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

  (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为 .

  常识2:等腰直角三角形三边(从小到大)的比为1:1: .

  学生掌握了这些常识可有两点好处:

  ①知道例2中“ ”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

比例线段 篇7

  教学建议

  知识结构

  重难点分析

  本节的重点是线段的比和的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

  本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

  教法建议

  1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

  2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

  3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

  4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

  5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

  教学设计示例1

  (第1课时)

  一、教学目标

  1.理解线段的比的概念.

  2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

  3.通过线段的比的有关计算,培养学习的计算能力.

  4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点  两条线段比的概念.

  2.教学难点  正确理解两条线段的比及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤

  【复习提问】

  找学生回答小学学过的比、比的前项和后项的概念.

  (两个数相除又叫做两数的比,记作 或a:b,其中a叫比的前项,b叫比的后项)

  【讲解新课】

  把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

  等.

  可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

  一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项.

  关于两条线段比的概念,教学中要揭示它的实质,即 表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

  就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

  (l)两条线段的比就是它们的长度的比.

  (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

  (3)两条线段的比值总是正数.(并不都是正数)

  (4)除了a=b之外, . 与 互为倒数.

  例1  见教材P202.

  讲解完例1后:

  (l)提问学生AB是 的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解.

  (2)给出:比例尺= ,就例1的图上,若图距是8cm的两地,实际距离是多少?

  另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

  例2  见教材P202.

  讲解完例2后:

  (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

  (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为 .

  常识2:等腰直角三角形三边(从小到大)的比为1:1: .

  学生掌握了这些常识可有两点好处:

  ①知道例2中“ ”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

  板书设计

比例线段 篇8

  教学建议

  知识结构

  重难点分析

  本节的重点是线段的比和的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

  本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

  教法建议

  1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

  2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

  3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

  4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

  5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

  教学设计示例1

  (第1课时)

  一、教学目标

  1.理解线段的比的概念.

  2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

  3.通过线段的比的有关计算,培养学习的计算能力.

  4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点  两条线段比的概念.

  2.教学难点  正确理解两条线段的比及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤

  【复习提问】

  找学生回答小学学过的比、比的前项和后项的概念.

  (两个数相除又叫做两数的比,记作 或a:b,其中a叫比的前项,b叫比的后项)

  【讲解新课】

  把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

  等.

  可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

  一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项.

  关于两条线段比的概念,教学中要揭示它的实质,即 表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

  就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

  (l)两条线段的比就是它们的长度的比.

  (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

  (3)两条线段的比值总是正数.(并不都是正数)

  (4)除了a=b之外, . 与 互为倒数.

  例1  见教材P202.

  讲解完例1后:

  (l)提问学生AB是 的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解.

  (2)给出:比例尺= ,就例1的图上,若图距是8cm的两地,实际距离是多少?

  另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

  例2  见教材P202.

  讲解完例2后:

  (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

  (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为 .

  常识2:等腰直角三角形三边(从小到大)的比为1:1: .

  学生掌握了这些常识可有两点好处:

  ①知道例2中“ ”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

  板书设计

比例线段 篇9

  教学建议

  知识结构

  重难点分析

  本节的重点是线段的比和的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

  本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

  教法建议

  1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

  2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

  3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

  4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

  5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

  教学设计示例1

  (第1课时)

  一、教学目标 

  1.理解线段的比的概念.

  2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

  3.通过线段的比的有关计算,培养学习的计算能力.

  4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点  两条线段比的概念.

  2.教学难点   正确理解两条线段的比及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤 

  【复习提问】

  找学生回答小学学过的比、比的前项和后项的概念.

  (两个数相除又叫做两数的比,记作 或a:b,其中a叫比的前项,b叫比的后项)

  【讲解新课】

  把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

  等.

  可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

  一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项.

  关于两条线段比的概念,教学中要揭示它的实质,即 表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

  就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

  (l)两条线段的比就是它们的长度的比.

  (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

  (3)两条线段的比值总是正数.(并不都是正数)

  (4)除了a=b之外, . 与 互为倒数.

  例1  见教材P202.

  讲解完例1后:

  (l)提问学生AB是 的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解.

  (2)给出:比例尺= ,就例1的图上,若图距是8cm的两地,实际距离是多少?

  另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

  例2  见教材P202.

  讲解完例2后:

  (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

  (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为 .

  常识2:等腰直角三角形三边(从小到大)的比为1:1: .

  学生掌握了这些常识可有两点好处:

  ①知道例2中“ ”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

比例线段 篇10

  一、教学目标 

  1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

  2.掌握比例基本性质和合分比性质.

  3.通过通过的应用,培养学习的计算能力.

  4.通过比例性质的教学,渗透转化思想.

  5.通过比例性质的教学,激发学生学习兴趣.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点 比例性质及应用.

  2.教学难点  正确理解成比例线段及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤 

  【复习提问】

  1.什么是线段的比?

  2.已知 这两条线段的比是 吗,为什么?

  【讲解新课】

  1.比例线段:见教材P203页。

  如:见教材P203页图5-2。

  又如:

  即a、b、c、d是成比例线段。

  注:①已知 问这四条线段成比例吗?

  (答:成比例。 ,这里与顺序无关)。

  ②若已知a、b、c、d是成比例线段,是指 不能写成 (在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

  板书教材P203页比例线段的一些附属概念。

  2.比例的性质:

  (1)比例的基本性质:如果 ,那么 。

  它的逆命题也成立,即:如果 ,那么 。

  推论:如果 ,那么 。

  反之亦然:如果 ,那么 。

  ①基本性质证明了“比例式”和“等积式”是可以互化的。

  ②由 ,除可得到 外,还可得到其它七个比例式。即由一个等积式 ,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式: 。注意区别与联系。

  ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

  ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

  (2)合比性质:如果 ,那么

  证明:∵ ,∴ 即:

  同理可证: (找学生板演)

  (3)等比性质:如果

  那么

  证明:设 ;则

  ∴

  等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

  例1(要求了解即可)

  (1)已知: ,求证: 。

  证明:∵ ,∴

  “通法”:∵ ,∴ 即

  (2)已知: ,求证: 。

  方法一:

  方法二:

  (1)÷(2)得:

  【小结】

  (1)比例线段的概念及附属概念。

  (2)比例的基本性质及其应用。

  八、布置作业 

  (1)求

  ① ② ③

  (2)求下列各式中的x

  ① ② ③ ④

  九、板书设计 

  比例线段(二)

  1.比例线段:

  教师板书定义

  ………

  比例线段的附属概念

  ………

  2.比例的性质

  (1)比例基本性质

  …………

  注意:(1)

  ②

  ③

  3.课堂练习

比例线段 篇11

  一、教学目标

  1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

  2.使学生掌握三角形一边平行线的判定定理.

  3.已知线的成已知比的作图问题.

  4.通过应用,培养识图能力和推理论证能力.

  5.通过定理的教学,进一步培养学生类比的数学思想.

  二、教学设计

  观察、猜想、归纳、讲解

  三、重点、难点

  l.教学重点:是平行线分线段成比例定理和推论及其应用.

  2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具.

  六、教学步骤

  【复习提问】

  叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

  【讲解新课】

  在黑板上画出图,观察其特点: 与 的交点A在直线 上,根据平行线分线段成比例定理有: ……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

  平行于 的边BC的直线DE截AB、AC,所得对应线段成比例.

  在黑板上画出左图,观察其特点: 与 的交点A在直线 上,同样可得出: (六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

  平行于 的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.

  综上所述,可以得到:

  推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.

  如图, (六个比例式).

  此推论是判定三角形相似的基础.

  注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知 ,DE是截线,这个推论包含了下图的各种情况.

  这个推论不包含下图的情况.

  后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)

  例3 已知:如图, ,求:AE.

  教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即: .

  让学生思考,是否可直接未出AE(找学生板演).

  【小结】

  1.知道推论的探索方法.

  2.重点是推论的正确运用

  七、布置作业

  (1)教材P215中2.

  (2)选作教材P222中B组1.

  八、板书设计

  数学教案-平行线分线段成比例定理 (第二课时)

比例线段 篇12

  一、教学目标

  1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

  2.掌握比例基本性质和合分比性质.

  3.通过通过的应用,培养学习的计算能力.

  4.通过比例性质的教学,渗透转化思想.

  5.通过比例性质的教学,激发学生学习兴趣.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点比例性质及应用.

  2.教学难点正确理解成比例线段及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤

  复习提问

  1.什么是线段的比?

  2.已知这两条线段的比是吗,为什么?

  讲解新课

  1.比例线段:见教材P203页。

  如:见教材P203页图5-2。

  又如:

  即a、b、c、d是成比例线段。

  注:①已知问这四条线段成比例吗?

  (答:成比例。,这里与顺序无关)。

  ②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

  板书教材P203页比例线段的一些附属概念。

  2.比例的性质:

  (1)比例的基本性质:如果,那么。

  它的逆命题也成立,即:如果,那么。

  推论:如果,那么。

  反之亦然:如果,那么。

  ①基本性质证明了“比例式”和“等积式”是可以互化的。

  ②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式:。注意区别与联系。

  ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

  ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

  (2)合比性质:如果,那么

  证明:∵,∴即:

  同理可证:(找学生板演)

  (3)等比性质:如果

  那么

  证明:设;则

  ∴

  等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

  例1(要求了解即可)

  (1)已知:,求证:。

  证明:∵,∴

  “通法”:∵,∴即

  (2)已知:,求证:。

  方法一:

  方法二:

  (1)÷(2)得:

  小结

  (1)比例线段的概念及附属概念。

  (2)比例的基本性质及其应用。

  八、布置作业

  (1)求

  ① ② ③

  (2)求下列各式中的x

  ① ② ③ ④

  九、板书设计

  1.比例线段:

  教师板书定义

  ………

  比例线段的附属概念

  ………

  2.比例的性质

  (1)比例基本性质

  …………

  ②

  ③

  3.课堂练习

221381
领取福利

微信扫码领取福利

比例线段(精选12篇)

微信扫码分享