欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 因式分解(精选12篇)

因式分解(精选12篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

因式分解(精选12篇)

因式分解 篇1

  课    题9.5乘法公式的再认识―因式分解

  课时分配本课(章节)需   3   课时本 节 课 为 第  3    课时为 本 学期总第      课时因式分解(三)-- 提公因式法

  教学目标1、            理解因式分解的意义及其与整式乘法的区别和联系2、            了解公因式的概念,掌握提公因式的方法3、            培养学生的观察、分析、判断及自学能力

  重    点掌握公因式的概念,会使用提公因式法进行因式分解。

  难    点1、正确找出公因式2、正确用提公因式法把多项式进行因式分解

  教学方法

  讲练结合、探索交流

  课型

  新授课

  教具投影仪

  教    师    活    动

  学 生 活 动情景设置:学生阅读“读一读”后,完成练习下列由左边到右边的变形,哪些是整式乘法,哪些是因式分解,因式分解用的是哪个公式?⑴ (x+2)(x-2)=x2 - 4;⑵  x2 - 4=(x+2)(x-2);⑶  x2 4 + 3x =(x+2)(x-2)+ 3x;⑷  x2 + 4 - 4x =(x-2)2⑸  am +bm +cm = m(a +b +c)新课讲解:我们来观察分析am +bm +cm = m(a +b +c),这个式子由左边到右边的变形是多项式的因式分解,这里m是多项式am +bm +cm的各项am 、bm 、cm都含有的因式,称为多项式各项的公因式。确定多项式的公因式的方法, 对数字系数取各项系数的最大公约数, 各项都含有的字母取最低次幂的积作为多项式的公因式, 公因式可以是单项式 , 也可以是多项式, 如:ax+bx 中的公因式是x. 多项式 a(x+y)+b(x+y) 的公因式是 (x+y). 如果多项式的第一项系数是负的, 一般要先提出 “一” 号, 使括号内的首项系数变为正, 在提出 “一” 号时, 注意括号里的各项都要变号.关键是确定多项式各项的公因式, 然后, 将多项式各项写成公因式与其相应的因式的积, 最后再提公因式, 把公因式写在括号外面, 然后再确定括号里的因式, 这个因式 ( 括号里的 ) 的项数与原多项式的项数相同, 如果项数不一致就漏项了.完成“议一议”如果多项式的各项含有公因式,那么就可以把这个公因式提出来,把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。例题5:把下列各式分解因式:⑴ 6a3b 9a2b2c ⑵ -2m3 + 8m2 - 12m思路点拨:通过例5,教会学生如何找公因式,讲清要决定系数与字母,具体方法加以强调。在提出 “一” 号后, 括到括号里的各项都要变号.解:⑴ 6a3b 9a2b2c= 3a2b・2a - 3a2b・3bc=  3a2b(2a - 3bc )     完成“想一想”,要放手让学生去做例题6:把下列各式分解因式: ⑴ - 3x2 + 18x - 27;  ⑵ 18a2 - 50;⑶ 2x2 y - 8xy + 8y。练习:第91页第1、2、3、4、5题小结:提公因式法分解因式的关键是确定公因式,当公因式是隐含的时候,多项式要经过适当的变形;变形的过程要注意符号的相应改变.我们已经学习了提公因式法和运用公式法,要注意先看能否用提公因式法,分解因式要进行到每个多项式因式都不能再分解为止。教学素材:a组题:1、 下列多项式因式分解正确的是 (   )     (a)     (b)     (c)     (d)     2、(1) 的公因式是               (2)       (3)     3、 把下列各式分解因式.     (1)     (2)     (3)     (4) 4、把下列各式分解因式:(1) 6p(p+q)-4p(p+q);(2) (m+n)(p+q)-(m+n)(p-q);(3) (2a+b)(2a-3b)-3a(2a+b)(4)  x(x+y)(x-y)-x(x+y)2;5、把下列各式分解因式:(1)  (a+b)(a-b)-(b+a);(2)  a(x-a)+b(a-x)-c(x-a);(3)  10a(x-y)2 - 5b(y-x);(4)  3(x-1)3y-(1-x)3z b组题:1、把下列各式分解因式:(1) 6(p+q)2-2(p+q)  (2) 2(x-y)2-x(x-y)⑶ 2x(x+y)2-(x+y)32、先因式分解,再求值.  (1) x(a-x)(a-y)-y(x-a)(y-a),  其中a=3,x=2,y=4;  (2) -ab(a-b)2+a(b-a)2-ac(a-b)2,      其中a=3,b=2,c=1.让学生自己阅读“读一读”,体会因式分解的意义及其与整式乘法的区别和联系完成“议一议”由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.学生回答:⑵ -2m3 + 8m2 - 12m= -(2m・m2 -2m・ 4m +2m・6)= -2m(m2 - 4m +6)完成“想一想”由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.让学生自己先做,同桌互相纠错,

  作业第92页第2⑶⑷⑸、3题

  板      书      设      计复习                          例5                       板演……                          ……                       …………                          ……                       …………                          例6                       …………                          ……                       …………                          ……                       ……

  教      学      后      记

因式分解 篇2

  【教学目标】

  1、了解因式分解的概念和意义;

  2、认识因式分解与整式乘法的相互关系――相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

  【教学重点、难点】

  重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

  【教学过程】

  ㈠、情境导入

  看谁算得快:(抢答)

  (1)若a=101,b=99,则a2-b2=___________;

  (2)若a=99,b=-1,则a2-2ab+b2=____________;

  (3)若x=-3,则20x2+60x=____________。

  ㈡、探究新知

  1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)

  3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)

  板书课题:§6.1 因式分解

  因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式

  ㈢、前进一步

  1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?

  2、因式分解与整式乘法的关系:

  因式分解

  结合:a2-b2 (a+b)(a-b)

  整式乘法

  说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

  结论:因式分解与整式乘法的相互关系――相反变形。

  ㈣、巩固新知

  1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b・6ac。

  2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。

  ㈤、应用解释

  例 检验下列因式分解是否正确:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。

  练习 计算下列各题,并说明你的算法:(请学生板演)

  (1)872+87×13

  (2)1012-992

  ㈥、思维拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=

  2.机动题:(填空)x2-8x+m=(x-4)( ),且m=

  ㈦、课堂回顾

  今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

  ㈧、布置作业

  作业本(1) ,一课一练

因式分解 篇3

  教学目标

  1、知识与技能

  会应用平方差公式进行因式分解,发展学生推理能力。

  2、过程与方法

  经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。

  3、情感、态度与价值观

  培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

  重、难点与关键

  1、重点:利用平方差公式分解因式。

  2、难点:领会因式分解的解题步骤和分解因式的彻底性。

  3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。

  教学方法

  采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维。

  教学过程

  一、观察探讨,体验新知

  【问题牵引】

  请同学们计算下列各式。

  (1)(a+5)(a―5);(2)(4m+3n)(4m―3n)。

  【学生活动】动笔计算出上面的两道题,并踊跃上台板演。

  (1)(a+5)(a―5)=a2―52=a2―25;

  (2)(4m+3n)(4m―3n)=(4m)2―(3n)2=16m2―9n2。

  【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。

  1、分解因式:a2―25;2、分解因式16m2―9n。

  【学生活动】从逆向思维入手,很快得到下面答案:

  (1)a2―25=a2―52=(a+5)(a―5)。

  (2)16m2―9n2=(4m)2―(3n)2=(4m+3n)(4m―3n)。

  【教师活动】引导学生完成a2―b2=(a+b)(a―b)的同时,导出课题:用平方差公式因式分解。

  平方差公式:a2―b2=(a+b)(a―b)。

  评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。

  二、范例学习,应用所学

  【例1】把下列各式分解因式:(投影显示或板书)

  (1)x2―9y2;(2)16x4―y4;

  (3)12a2x2―27b2y2;(4)(x+2y)2―(x―3y)2;

  (5)m2(16x―y)+n2(y―16x)。

  【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解。

  【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演。

  【学生活动】分四人小组,合作探究。

  解:(1)x2―9y2=(x+3y)(x―3y);

  (2)16x4―y4=(4x2+y2)(4x2―y2)=(4x2+y2)(2x+y)(2x―y);

  (3)12a2x2―27b2y2=3(4a2x2―9b2y2)=3(2ax+3by)(2ax―3by);

  (4)(x+2y)2―(x―3y)2=[(x+2y)+(x―3y)][(x+2y)―(x―3y)]=5y(2x―y);

  (5)m2(16x―y)+n2(y―16x)

  =(16x―y)(m2―n2)=(16x―y)(m+n)(m―n)。

因式分解 篇4

  第1课时

  1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.

  2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.

  自主探索,合作交流.

  1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.

  2.通过对因式分解的教学,培养学生“换元”的意识.

  【重点】 因式分解的概念及提公因式法的应用.

  【难点】 正确找出多项式中各项的公因式.

  【教师准备】 多媒体.

  【学生准备】 复习有关乘法分配律的知识.

  导入一:

  【问题】 一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.

  解法1:这块场地的面积=×+×+×=++==2.

  解法2:这块场地的面积=×+×+×=×=×4=2.

  从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.

  [设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.

  导入二:

  【问题】 计算×15-×9+×2采用什么方法?依据是什么?

  解法1:原式=-+==5.

  解法2:原式=×(15-9+2)=×8=5.

  解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.

  [设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.

  一、提公因式法分解因式的概念

  思路一

  [过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的'问题.

  如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).

  大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?

  分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解.

  由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式.

  由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式.

  总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.

  [设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.

  思路二

  [过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来.

  多项式 ab+ac中,各项都含有相同的因式吗?多项式 3x2+x呢?多项式b2+nb-b呢?

  结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.

  多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?

  结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.

  [设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.

  二、例题讲解

  [过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧.

  (教材例1)把下列各式因式分解:

  (1)3x+x3;

  (2)7x3-21x2;

  (3)8a3b2-12ab3c+ab;

  (4)-24x3+12x2-28x.

  〔解析〕 首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.

  解:(1)3x+x3=x3+xx2=x(3+x2).

  (2)7x3-21x2=7x2x-7x23=7x2(x-3).

  (3)8a3b2-12ab3c+ab

  =ab8a2b-ab12b2c+ab1

  =ab(8a2b-12b2c+1).

  (4)-24x3+12x2-28x

  =-(24x3-12x2+28x)

  =-(4x6x2-4x3x+4x7)

  =-4x(6x2-3x+7).

  【学生活动】 通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.

  总结:提取公因式的步骤:(1)找公因式;(2)提公因式.

  容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.

  教师提醒:

  (1)各项都含有的字母的最低次幂的积是公因式的字母部分;

  (2)因式分解后括号内的多项式的项数与原多项式的项数相同;

  (3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;

  (4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.

  [设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.

  1.提公因式法分解因式的一般形式,如:

  a+b+c=(a+b+c).

  这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式.

  2.提公因式法分解因式的关键在于发现多项式的公因式.

  3.找公因式的一般步骤:

  (1)若各项系数是整系数,则取系数的最大公约数;

  (2)取各项中相同的字母,字母的指数取最低的;

  (3)所有这些因式的乘积即为公因式.

  1.多项式-6ab2+18a2b2-12a3b2c的公因式是( )

  A.-6ab2cB.-ab2

  C.-6ab2D.-6a3b2c

  解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.

  2.下列用提公因式法分解因式正确的是( )

  A.12abc-9a2b2=3abc(4-3ab)

  B.3x2-3x+6=3(x2-x+2)

  C.-a2+ab-ac=-a(a-b+c)

  D.x2+5x-=(x2+5x)

  解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C.

  3.下列多项式中应提取的公因式为5a2b的是( )

  A.15a2b-20a2b2

  B.30a2b3-15ab4-10a3b2

  C.10a2b-20a2b3+50a4b

  D.5a2b4-10a3b3+15a4b2

  解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.

  4.填空.

  (1)5a3+4a2b-12abc=a( );

  (2)多项式32p2q3-8pq4的公因式是 ;

  (3)3a2-6ab+a= (3a-6b+1);

  (4)因式分解:+n= ;

  (5)-15a2+5a= (3a-1);

  (6)计算:21×3.14-31×3.14= .

  答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

  5.用提公因式法分解因式.

  (1)8ab2-16a3b3;

  (2)-15x-5x2;

  (3)a3b3+a2b2-ab;

  (4)-3a3-6a2+12a.

  解:(1)8ab2(1-2a2b).

  (2)-5x(3+x).

  (3)ab(a2b2+ab-1).

  (4)-3a(a2+2a-4).

  第1课时

  一、教材作业

  【必做题】

  教材第96页随堂练习.

  【选做题】

  教材第96页习题4.2.

  二、课后作业

  【基础巩固】

  1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 .

  2.(20xx淮安中考)因式分解:x2-3x= .

  3.分解因式:12x3-18x22+24x3=6x .

  【能力提升】

  4.把下列各式因式分解.

  (1)3x2-6x;

  (2)5x23-25x32;

  (3)-43+162-26;

  (4)15x32+5x2-20x23.

  【拓展探究】

  5.分解因式:an+an+2+a2n.

  6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.

  【答案与解析】

  1.2ab

  2.x(x-3)

  3.(2x2-3x+42)

  4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

  5.解:原式=an1+ana2+anan=an(1+a2+an).

  6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).

  本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.

  在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.

  由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.

  随堂练习(教材第96页)

  解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

  习题4.2(教材第96页)

  1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

  2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

  3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).

  提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想――类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.

  已知方程组求7(x-3)2-2(3-x)3的值.

  〔解析〕 将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便.

  解:7(x-3)2-2(3-x)3

  =(x-3)2[7+2(x-3)]

  =(x-3)2(7+2x-6)

  =(x-3)2(2x+).

  由方程组可得原式=12×6=6.

因式分解 篇5

  一、教学目标

  1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;

  2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;

  3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;

  4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;

  5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

  二、重点・难点・疑点及解决办法

  1.教学重点:用公式法将二次三项式因式分解。

  2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

  3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

  4.解决办法:二次三项式能分解因式

  二次三项式不能分解

  二次三项式分解成完全平方式

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)写出关于x的二次三项式?

  (2)将下列二次三项式在实数范围因式分解。

  ①;②;③。

  由③感觉比较困难,引出本节课所要解决的问题。

  2.新知讲解

  (1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

  ①;

  解:原式变形为。

  ∴  ,

  ②;

  解原方程可变为

  观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

  (2)推导出公式

  设方程的两个根为,那么,

  ∴ 

  这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成

  教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

  第 1 2 页  

因式分解 篇6

  一、教学目标

  【知识与技能】

  了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

  【过程与方法】

  通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。

  【情感态度价值观】

  在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。

  二、教学重难点

  【教学重点】

  运用平方差公式分解因式。

  【教学难点】

  灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。

  三、教学过程

  (一)引入新课

  我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?

  大家先观察下列式子:

  (1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

  他们有什么共同的特点?你可以得出什么结论?

  (二)探索新知

  学生独立思考或者与同桌讨论。

  引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。

  提问1:能否用语言以及数学公式将其特征表述出来?

因式分解 篇7

  学习目标

  1、学会用平方差公式进行因式法分解

  2、学会因式分解的而基本步骤.

  学习重难点重点

  用平方差公式进行因式法分解.

  难点

  因式分解化简的过程

  自学过程设计教学过程设计

  看一看

  平方差公式:

  平方差公式的逆运用:

  做一做:

  1.填空题.

  (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

  (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

  2.把下列各式分解因式结果为-(x-2y)(x+2y)的多项式是

  A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

  3.多项式-1+0.04a2分解因式的结果是

  A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

  C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

  4.把下列各式分解因式:

  (1)4x2-25y2;(2)0.81m2-n2;

  (3)a3-9a;(4)8x3y3-2xy.

  5.把下列各式分解因式:

  (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

  6.用简便方法计算:3492-2512.

  想一想

  你还有哪些地方不是很懂?请写出来。

  ____________________________________________________________________________________

  预习展示一:

  1、下列多项式能否用平方差公式分解因式?

  说说你的理由。

  4x2+y2

  4x2-(-y)2

  -4x2-y2-4x2+y2

  a2-4a2+3

  2.把下列各式分解因式:

  (1)16-a2

  (2)0.01s2-t2

  (4)-1+9x2

  (5)(a-b)2-(c-b)2

  (6)-(x+y)2+(x-2y)2

  应用探究:

  1、分解因式

  4x3y-9xy3

  变式:把下列各式分解因式

  ①x4-81y4

  ②2a-8a

  2、从前有一位张老汉向地主租了一块“十字型”土地(尺寸如图)。为便于种植,他想换一块相同面积的长方形土地。同学们,你能帮助张老汉算出这块长方形土地的长和宽吗?w

  3、在日常生活中如上网等都需要密码.有一种因式分解法产生的密码方便记忆又不易破译.

  例如用多项式x4-y4因式分解的结果来设置密码,当取x=9,y=9时,可得一个六位数的密码“018162”.你想知道这是怎么来的吗?

  小明选用多项式4x3-xy2,取x=10,y=10时。用上述方法产生的密码是什么?(写出一个即可)

  拓展提高:

  若n为整数,则(2n+1)2-(2n-1)2能被8整除吗?请说明理由.

  教后反思考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的。

因式分解 篇8

  教学目标

  教学知识点

  使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。

  潜力训练要求。

  透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。

  情感与价值观要求。

  透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。

  教学重点

  1、理解因式分解的好处。

  2、识别分解因式与整式乘法的关系。

  教学难点透过观察,归纳分解因式与整式乘法的关系。

  教学方法观察讨论法

  教学过程

  Ⅰ、创设问题情境,引入新课

  导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

  Ⅱ、讲授新课

  1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。

  993-99=99×98×100

  2、议一议

  你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。

  3、做一做

  (1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

  ③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

  (2)根据上面的算式填空:

  ①3x2-3x=;②m2-16=;③ma+mb+mc=;

  ④y2-6y+9=2。⑤a3-a=。

  定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。

  4。想一想

  由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?

  下面我们一齐来总结一下。

  如:m(a+b+c)=ma+mb+mc(1)

  ma+mb+mc=m(a+b+c)(2)

  5、整式乘法与分解因式的联系和区别

  ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。

  6。例题下列各式从左到右的变形,哪些是因式分解?

  (1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

  (3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

  Ⅲ、课堂练习

  P40随堂练习

  Ⅳ、课时小结

  本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。

因式分解 篇9

  这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容。

  在新课引入的过程中,我首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接着就让学生利用平方差公式做三个整式乘法的运算。然后,我巧妙的将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。只见我的题目一出来,学生就争先恐后地回答出来了。待学生回答完之后,我马上追问“为什么”时,学生轻而易举地讲出是将原来的平方差公式反过来运用,马上使学生形成了一种逆向的思维方式。之后,我就顺利地和同学们一起分析了因式分解中的平方差公式――两数的平方差等于这两个数的和与这两个数的差的积,讨论了“怎样的多项式能用平方差公式因式分解?”可以说,对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用平方差公式进行因式分解。

因式分解 篇10

  教学目标:

  1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.

  2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.

  3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.

  教学重、难点:用提公因式法和公式法分解因式.

  教具准备:多媒体课件(小黑板)

  教学方法:活动探究法

  教学过程:

  引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?

  知识详解

  知识点1 因式分解的定义

  把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

  【说明】 (1)因式分解与整式乘法是相反方向的变形.

  例如:

  (2)因式分解是恒等变形,因此可以用整式乘法来检验.

  怎样把一个多项式分解因式?

  知识点2 提公因式法

  多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

  探究交流

  下列变形是否是因式分解?为什么?

  (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

  (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

  典例剖析 师生互动

  例1 用提公因式法将下列各式因式分解.

  (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

  分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.

  小结 运用提公因式法分解因式时,要注意下列问题:

  (1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.

  (2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数).

  (3)因式分解最后如果有同底数幂,要写成幂的形式.

  学生做一做 把下列各式分解因式.

  (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

  知识点3 公式法

  (1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

  (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2・2x・3y+(3y)2=(2x-3y)2.

  探究交流

  下列变形是否正确?为什么?

  (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

  例2 把下列各式分解因式.

  (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

  分析:本题旨在考查用完全平方公式分解因式.

  学生做一做 把下列各式分解因式.

  (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

  综合运用

  例3 分解因式.

  (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

  分析:本题旨在考查综合运用提公因式法和公式法分解因式.

  小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式. 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.

  探索与创新题

  例4 若9x2+kxy+36y2是完全平方式,则k= .

  分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差).

  学生做一做 若x2+(k+3)x+9是完全平方式,则k= .

  课堂小结

  用提公因式法和公式法分解因式,会运用因式分解解决计算问题.

  各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。

  自我评价 知识巩固

  1.若x2+2(m-3)x+16是完全平方式,则m的值等于( )

  A.3 B.-5 C.7. D.7或-1

  2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )

  A.2 B.4 C.6 D.8

  3.分解因式:4x2-9y2= .

  4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

  5.把多项式1-x2+2xy-y2分解因式

  思考题 分解因式(x4+x2-4)(x4+x2+3)+10.

因式分解 篇11

  课    题9.5乘法公式的再认识―因式分解

  课时分配本课(章节)需 3    课时本 节 课 为 第 1    课时为 本 学期总第      课时一、运用平方差公式分解因式

  教学目标1、使学生了解运用公式来分解因式的意义。2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)

  重    点运用平方差公式分解因式

  难    点灵活运用平方差公式分解因式

  教学方法

  对比发现法

  课型

  新授课

  教具投影仪

  教    师    活    动

  学 生 活 动情景设置:同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?(学生或许还有其他不同的解决方法,教师要给予充分的肯定)新课讲解:从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?首先我们来做下面两题:(投影)1.计算下列各式:(1) (a+2)(a-2)=                      ;(2) (a+b)( a-b)=                     ;(3) (3 a+2b)(3 a-2b)=                 .2.下面请你根据上面的算式填空:(1) a2-4=                      ;(2) a2-b2=                      ;(3) 9a2-4b2=                      ;请同学们对比以上两题,你发现什么呢?事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。(投影)比如:a216=a242=(a+4)(a4)例题1:把下列各式分解因式;(投影)(1) 3625x2  ;          (2) 16a29b2      ;(3) 9(a+b)24(ab)2  .(让学生弄清平方差公式的形式和特点并会运用)例题2:如图,求圆环形绿化区的面积练习:第87页练一练第1、2、3题小结:这节课你学到了什么知识,掌握什么方法?教学素材:a组题:1.填空:81x2-    =(9x+y)(9x-y); =              利用因式分解计算: =                  。2、下列多项式中能用平方差公式分解因式的是(      )     (a)         (b)   (c)        (d) 3. 把下列各式分解因式(1) 1-16 a2               (2) 9a2 x2-b2y2(3).49(a-b)2-16(a+b)2b组题:1分解因式81 a 4-b4=     2若a+b=1,  a2+b2=1  , 则ab=           ;3若26+28+2n是一个完全平方数,则n=              . 由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.学生回答1:992-1=99×99-1=9801-1=9800学生回答2:992-1就是(99+1)(99-1)即100×98学生回答:平方差公式学生回答:(1):  a2-4(2):  a2-b2(3):  9 a2-4b2学生轻松口答(a+2)(a-2)(a+b)( a-b)(3 a+2b)(3 a-2b)学生回答:把乘法公式(a+b)( a-b)=a2-b2反过来就得到a2-b2=(a+b)(a-b)学生上台板演:3625x2=62(5x)2=(6+5x)(65x)16a29b2=(4a)2(3b)2=(4a+3b)(4a3b)9(a+b)24(ab)2=[3(a+b)]2[2(ab)]2=[3(a+b)+2(ab)][3(a+b)2(ab)]=(5a+b)(a+5b)解:352π152π=π(352152)=(35+15)(3515)π=50×20π=1000π  (m2)这个绿化区的面积是1000πm2学生归纳总结

  作业第91页第1(1)(2)②③(3)①③④题

  板      书      设      计复习                          例1                       板演……                          ……                       …………                          ……                       …………                          例2                        …………                          ……                       …………                          ……                       ……

  教      学      后      记

因式分解 篇12

  学习目标

  1、了解因式分解的意义以及它与正式乘法的关系。

  2、能确定多项式各项的公因式,会用提公因式法分解因式。

  学习重点

  能用提公因式法分解因式。

  学习难点

  确定因式的公因式。

  学习关键

  在确定多项式各项公因式时,应抓住各项的公因式来提公因式。

  学习过程

  一.知识回顾

  1、计算

  (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

  (3)、m(a+b)(4)、2ab(x-2y+1)

  二、自主学习

  1、阅读课文P72-73的内容,并回答问题:

  (1)知识点一:把一个多项式化为几个整式的__________的形式叫做____________,也叫做把这个多项式__________。

  (2)、知识点二:由m(a+b+c)=ma+mb+mc可得

  ma+mb+mc=m(a+b+c)

  我们来分析一下多项式ma+mb+mc的特点;它的每一项都含有一个相同的因式m,m叫做各项的_________。如果把这个_________提到括号外面,这样

  ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种________的方法叫做________。

  2、练一练。P73练习第1题。

  三、合作探究

  1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、

  2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是_____________,右边是_____________。

  3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?

  (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

  (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

  4、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:

  (1)确定公因式的数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。

  例如:8a2b-72abc公因式的数字因数为8。

  (2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的'字母,其指数取最低的。故8a2b-72abc的公因式是8ab

  四、展示提升

  1、填空(1)a2b-ab2=ab(________)

  (2)-4a2b+8ab-4b分解因式为__________________

  (3)分解因式4x2+12x3+4x=__________________

  (4)__________________=-2a(a-2b+3c)

  2、P73练习第2题和第3题

  五、达标测试。

  1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?

  (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

  (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

  (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

  2.课本P77习题8.5第1题

  学习反思

  一、知识点

  二、易错题

  三、你的困惑

221381
领取福利

微信扫码领取福利

因式分解(精选12篇)

微信扫码分享