欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 1.2 有理数(通用13篇)

1.2 有理数(通用13篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

1.2 有理数(通用13篇)

1.2 有理数 篇1

  1.2 有理数

  【教学目标】

  1.掌握有理数的概念;

  2.会对有理数按一定的标准进行分类;

  3.体检分类.

  【对话探索设计】

  〖复习〗

  我们知道,所有的分数都可以写成两个整数的比.有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗?  可以写成两个整数的比吗?  是不是分数?

  结论:所有的有限小数和无限循环小数都是分数.

  〖探索1〗

  小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?

  结论:正整数零负整数统称整数.

  〖探索2〗

  下列负数哪些是负分数?

  -12, ,-0.33, ,-12.03,  .

  〖探索3〗

  所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:

  1, 0.0708, -700, -π, -3.88, 0,  , 3.14159265,  , .

  正整数集合:{          …}    负整数集合:{        …}

  整数集合:{                      …}

  正分数集合:{          …}    负分数集合:{        …}

  (注意:大括号内的省略号表示什么?)

  〖探索4〗

  为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?

  结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;

  (2)分数一定是小数,小数不一定是分数.

  〖探索5〗

  整数和分数统称有理数.

  在数-100, 70.8, -7, π, -3.8, 0,  ,  ,  中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.

  (友情提示:π,  都是小数,但都不是分数,自然也都不是有理数.你答对了吗?)

  〖练习〗

  p10.练习

  【作业】

  p18.习题1.

  【补充作业】

  1.列出竖式,把分数 化为小数.(体会分数不可能是无限不循环小数.)

  2.把下列小数化为分数:3.14159,  .

  【备选素材】

  1.判断:

  (1)一个有理数,不是正数,就是负数;

  (2)一个有理数,不是整数,就是分数;

  (3)一个有理数,是分数,就一定是小数;

  (4)一个无限小数,如果不循环,就不是有理数;

  (5)小数就是分数;

  (6)有理数只能分成两类.

  (7)负分数不是负数.

  2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类.

  3.分数可以分为有限小数和________________两类.

  4.满足什么条件的小数才是有理数?

  5.(1)列出竖式,把分数 化为小数;(体会分数不可能是无限不循环小数.)

  (2)有的小数不是分数,你能举出一个例子吗?

  (3)说明为什么0.3是分数,而 却不是.

  6.有理数可以分为整数和分数两类,还可以按符号分为正有理数____和___________三类.

  7.把下列各数填在相应的集合里:

  -|-3|, -(-0.072), π, -3.88,  , 3.14,   ,   .

1.2 有理数 篇2

  教学目标1,  掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2,  了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3,  体验分类是数学上的常用处理问题的方法。

  教学难点正确理解分类的标准和按照一定的标准进行分类

  知识重点正确理解有理数的概念

  教学过程(师生活动)

  设计理念

  探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).    问题1:观察黑板上的9个数,并给它们进行分类.    学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.・・…(由于小数可化为分数,以后把小数和分数都称为分数)    通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.    按照书本的说法,得出“整数”“分数”和“有理数”的概念.    看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.2,教科书第10页练习.    此练习中出现了集合的概念,可向学生作如下的说明.    把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;    数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.    思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。

  创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。负整数负分数正整数正分数正有理数零负有理数

  有理数

  这个分类可视学生的程度确定是否有必要教学。应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

  小结与作业

  课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  本课作业1,  必做题:教科书第18页习题1.2第1题2,  教师自行准备

  本课教育评注(课堂设计理念,实际教学效果及改进设想)1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。   2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。   3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

1.2 有理数 篇3

  一、教学目标:

  (一)知识与技能

  1、 借助生活中的实例,了解从自然数、分数到有理数的扩展过程,体会有理数应用的广泛性。

  2、 理解有理数的概念。

  3、 会用正数、负数、零表示生活中具有相反意义的量。

  4、 理解有理数的分类。

  (二)能力训练要求

  通过大量的现实实例,多彩的数学活动机会,让学生体验数学和现实生活的紧密联系,提高学习的兴趣,培养学习的合作交流能力,促进对知识的理解和掌握。

  二、重点、难点:

  1、重点:有理数的概念。

  2、难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃。

  三、教学过程:

  1、 创设情景,引入新知:

  将学生从生活中寻找到的几段含有数据的材料在幻灯片中投影出来:

  (说明:学生自己做的作业,较能引起学生的兴趣。)

  问:材料中含有哪几类数据?

  (1) 本次大赛共有包括港、奥、台在内的近200支代表队,300个节目赛,其中22支代表队,37个节目进入总决赛。我市爱绿艺校代表队的32名小演员是本次参赛选手中年龄最小的,平均年龄仅5岁,但获得的荣誉却是幼儿组最高的金奖。

  答:都是自然数。

  (2) 据了解,我国公路隧道总数已达1782座,总长度704公里,分别是改革开放之初的4.7倍和 倍,是世界上公路隧道最多的国家。我国目前最长的隧道是铁路线上的秦岭隧道,全长18.46公里。正在施工的双向分离式四车道终南山隧道是世界第二、亚洲第一的公路隧道。

  答:有自然数,分数。

  师:我们在小学的时候已经学过自然数和分数,这些数能够满足我们生活的需要吗?还会不会有新的数?

  (3) 珠穆朗玛峰是喜玛拉雅山脉的主峰,海拔8848米,是中国第一高峰,也是地球上第一高峰; 吐鲁番盆地位于新疆维吾尔自治区中部,天山山地东端。盆地底部海拔-155米。是中国海拔最低处。

  2、具有相反意义的量:

  师:这里的两个数据分别表示什么意思?“-155”这个带符号的数我们以前没有见过,它在这里表示什么意思?

  生:地理上学过测量高度时,规定海平面的高度为0米,8848表示比海平面高出8848米,而-155表示比海平面低155米。

  切换到另一个投影材料:

  月球表面白天气温可高达123℃,夜晚可低至-233℃,图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服。

  师:这里123℃,-233℃这两个量分别表示什么意思?

  生:123℃表示零上123℃,-233℃表示零下233℃。

  师:你还在哪些地方见过用带“-”这个号的数?

  生:企业的年收入的盈利与亏损中的亏损数经常用带“-”号的数表示,如盈利500用500记,亏损500用-500记。

  生:股票中上升5元记做5,下跌3元记做-3。

  师:大家观察黑板上我们刚刚举的这些例子,每个例子中出现的一对量,有什么共同特点呢?

  生:这里出现的每一对量,都是表示相反意义的量。

  3、正数和负数

  师:这里零下233℃不用-233℃表示,直接用自然数233℃表示,可以吗?

  生:不可以,因为233℃表示零上233℃而不是零下233℃。

  师:看来我们学过的数不够用了,自然数、分数还不能够满足我们生活所需。在日常生活和生产实践中,我们经常会这种具有相反意义的量,如表示高度有“海拔上”与“海拔下”,温度有“零上”与”零下”,经营情况有“盈利”与“亏损”等等,为了表示具有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外)表示,这样的数叫做正数。把另一种与之相反的量规定为负,用过去学过的数(零除外)前面放上“-”这个符号来表示,“-”这个符号称为负号,如-155,-233等,这样的数就叫做负数。读作“负155,负233”。与负号具有相反意义的符号是“+”号,为了突出符号正数前面可以放上正号(常省略不写)。特别要指出的是:零既不是正数也不是负数。

  【做一做】:p7

  2、填空:

  (1) 规定盈利为正,某公司去年亏损了2.5万元,记做_______万元,今年盈利了3.2万元,记做_________万元;

  (2) 规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔________米,吐鲁番盆地最低点低于海平面155米,记做海拔_______米。

  【课内练习】:p8

  1、填空。

  (1) 汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正,汽车向北行驶75km,记做_______km(或______km)汽车向南行驶100km,记做_____km.

  (2) 如果向银行存入50元记为50元,那么-30.50元表示_________

  (3) 规定增加的百分比为正,增加25%记做________,-12%表示__________.

  师:在现实生活中有具有相反意义的量实在挺多的,大家总结一下有哪些具有相反意义的量可以用正、负数表示呢?(学生讨论、总结)

  一般情况下,正、负规定如下:

  符号 具有相反意义的量

  + 零上 盈利 收入 北 存入 增加 ……

  - 零下 亏损 支出 南 取出 减少 ……

  4、数的分类。

  师:通过今天的学习,我们数的家族出现了新的成员――负数。我们来回顾一下我们学过的数有哪些呢,并进行分类。

  生讨论结果:

  师:还有其他的分类方法吗?

  生:

  【做一做】:p7

  1、(口答)读出下列各数,它们各是正数还是负数?

  7,-7.46,0,

  师生总结:判断正数与负数的关键师看它前面的正、负号:

  有“-”号就是负数,有“+”号或省略了正号的数就是正数。

  例:下面给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?

  解: 是正数; 是负数; 是整数; 是分数, 都是有理数。

  5、 小结

  (1) 用正数与负数表示相反意义的量。

  (2) 正数与负数:像1,+2.5等这样的数叫正数。像-6,-1.4, 等这样的数叫负数。0既不是正数也不是负数。

  (3) 正数与负数在形式上的区别:负数一定带有负号。

  (4) 数的分类

1.2 有理数 篇4

  1.2.1 有理数

  教学任务分析

  教

  学

  目

  标知识技能理解有理数的含义,能够把给出的有理数分类、了解0在有理数分类中的作用.数学思考经过本节课的学习,使学生树立分类讨论的观点和能够正确地进行分类的能力.解决问题培养学生独立发现问题、分析问题、解决问题的能力.

  情感态度通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

  重点会把所给的有理数进行正确的分类

  难点掌握两种有理数的分类方法

  教学流程安排

  活动流程图

  活动内容和目的一、提出问题 二、初步分析解决问题三、知识应用,拓展创新四、作业创设问题情景,复习所学知识,同时引出新的问题有理数的分类.解决问题,引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.培养学生灵活的思维能力.巩固新知

  教学过程设计一、    创设问题情景复习所学知识,同时引出新的问题有理数的分类.问题1: 有了负数以后,我们学过的数有哪些?学生活动设计:学生根据所学内容,回忆所学过的数,同时举出相应的例子,一可以让学生复习旧的知识,二可以在所提问题中发现新的知识学生举例:1,2,-1,-3, ,0等 问题2: 在上述列举的数中,我们可以怎样进行分类?学生活动设计:学生根据数的特征进行分类,显然可以把小学学过的数(正数)分成一类正数,把正数前面加负号(负数)的数分成一类负数,0既不是正数也不是负数;也可以分成整数和分数,于是有下列分类:正整数,如:1、2、3...   零:0    负整数:-1,-2,-3...正分数:         负分数: 教师活动设计:引导学生理解有理数以及有理数的分类:正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数,这里的分数特指是分母不为1的分数,整数有时可以认为是分母是1的分数.二、    解决问题引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.问题3: 如何对有理数进行分类?学生活动设计:根据以上知识学生进行分类.   或   把一些数放在一起,就组成一个数的集合,简称数集.所有的有理数组成的数集叫做有理数集,所有整数组成的数集叫做整数集.问题4: 你能解决下列问题吗?谈谈你的看法?(1)       0是整数吗?是正数吗?是有理数吗?(2)       -5是整数吗?是负数吗?是有理数吗?(3)       自然数是整数吗?是正数吗?是有理数吗?(4)           下列有理数中,哪些是整数?哪些是分数?哪些是正数?哪些是负数?-7、10.1、89、0、-0.67、 、 〔解答〕(1)0是整数、不是正数但是有理数(2)-5是整数、负数、有理数(3)自然数是整数,不是所有的自然数是正数(比如0),所有的自然数都是有理数(4)整数:-7、89、0  分数:10.1、-0.67、 、   正数:10.1、89、 负数:-7、-0.67、 学生活动设计:学生独立思考上述问题,必要时进行适当的讨论,然后学生进行适当的交流,个别同学在交流中逐步完善自己对问题的看法.三、知识应用,拓展创新我们已经能够对有理数进行合理的分类,共有两种分类方法,下面我们就利用这两种分类方法解决下列问题.问题5:把下列各数填在表示相应集合的大括号中:+6、-8、25,-0.4,0,- ,9.15, 整数集合          ;分数集合           ;   非负数集合      ;正数集合     ;负数集合    .解:整数集合 分数集合 非负数集合 正数集合 负数集合 学生活动设计:(1)把一些数看作一个整体,那么这个整体就叫这些数的集合.其中的每一个数叫做这个集合的一个元素.(2)特别要注意“零”是整数集合、非负数集合、有理数集合中的一个元素;“零”不仅表示“没有”而且具有非常确定的内容,如零时、零度;“零”是正负数的界限;“零”是偶数;“零”能被任何非零数整除;“零”也是一个不可缺少的数码;在数的表示中起着十分重要的作用.(3)非负有理数包括正有理数和零,在数学里,“正”和“整”不能通用,是有区别的;正相对于负来说;整数是相对于分数而言的.问题6:如图,大圆覆盖的区域表示有理数的范围,中圆覆盖的区域表示整数的范围,小圆覆盖的区域表示正整数的范围.小圆和中圆把大圆覆盖的区域分割为无公共部分的a、b、c三个部分,那么(1)a、b、c分别表示什么区域?(2)请将下列各数填入相应的区域内:-7.3、-4、 、0、+2.4、+3、+5、 学生活动设计:学生认真读题,仔细分析问题所涉及的细节,分析出a区域表示的数是有理数但不是整数,从而得到a区域表示的数应该是分数,b区域表示的数是整数但不是正整数,从而得到b区域应该是非正整数(0和负整数),c区域显然是正整数,问题(1)解决.有了以上分析问题(2)容易解决.教师活动设计:引导学生进行自主分析问题,在分析问题的过程抓住细节,启发学生进行解决问题,在学生没有思路时进行适当的提示等.四、小结和作业小结:1.       本节内容:有理数以及分类.2.       重点内容:有理数的两种分类方法、能够对所给的数进行分类.作业:p10 练习   p17 习题1.2   1

1.2 有理数 篇5

  一.  教学目标知识与技能:学习正数、负数、有理数的概念,会用正、负数表示具有相反意义的量,能正确地将有理数进行分类. 过程与方法:通过观察节前图,分析、讨论出用正、负数表示具有相反意义的量的方法,了解有理数的产生的必要性、合理性. 情感与态度:要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史. 二.  教学重点和难点教学重点:正数、负数的概念对有理数的建立起关键性的作用,是本节课重点. 教学难点:正数、负数的概念的建立是学生从来未经历过的数学的抽象过程,是本节的难点. 三.  教学过程1.       创设情景,引入新课同学们你们还记不记上一节课老师请你们举了一些生活当中的例子,这些例子用自然数,分数,小数是不能解决的,当时我们都举了哪些例子啊? 我记得同学们好象讲到了温度计当中零下的温度,还有地下室,还有欠银行的钱如何表示,还有路标向东向西,扣分如何表示等等等等.那么温度的零上、零下,路程的向东、向西,钱的收入和支出,得分和扣分这些量是不是相互对立的?因此我们称它们为具有相反意义的量,那么如何把这些具有相反意义的量表示出来呢? 2.合作探索,寻求新知师:为了表示具有相反意义的量,我们把一种意义的量规定为正,比如我们会把零上的温度规定为正,路程当中会把向东方向规定为正方向,钱的收入规定为正,把另一种与之意义相反的量规定为负,而这些规定为正的量一般比较容易表示,比如规定向东为正,则向东22千米,记作22千米,而与之相反的量就不好表示,如果也记作22千米,别人一看就分不清是向东还是向西,所以我们必须引进新的数来表示这些相反意义的量.师:把过去学过的数(除零外)规定为正数,如123,15,2/3等,正数前面有时也可以放上“+”(读做正号);在这些数的前面放上“-”(读做负号)就表示负数,如-123,-15,-2/3等.负数是在正数的前面加上“―”得到的,大家现在来举一队正数和负数?那下面老师来举一个例子:0是正数,-1是负数,对吗?那么1是正数,0是负数.正数里有没有包括0,负数会不会包括0,所以零既不是正数,也不是负数.(强调)有了负数,相反意义的量就好表示了,规定向东为正,则向东22千米,记作22千米,向西走50米,就记作-50米.那现在我来问大家:如果上升8米,记作+8,那么下降5米,应该怎么记呢?做一做:第二题这样我们学过的数中,又增加了新的数,我们以前学的整数如1,2,3,4,更准确地说是正整数,那么-1,-2,-3,-4应该称为什么?1/2,3/2,5.4为正分数,则-1/2,-3/2,-5.4为           .(这里老师要提示一下:凡是能化为分数的小数都算做是分数) 3.练习反馈,巩固新知例:下列给出的各数中哪些是正数、负数?哪些是整数、分数?哪些是有理数?-8.4,22,+17/6,0.33,0,-3/5,-9.先让学生做,总结学生出现的一些问题分析:同学们我们在分类的时候,只要根据前面这个分类图来分就会很简单.再提一下正有理数.由教师来演示.本例主要考察学生对于数的不同分类,加强学生的分类意识.课内练习第8页1,24.回顾小结强调负数的由来,及有理数的分类.5.布置作业p8---1,2,3,4,5(选做).四. 教学反思昨天的作业情况很不理想,特别是12班,还有今天上课12、13班的纪律情况还是不行,今天在这个班级上课的教学任务完成的不好,我甚至抓不住教学时间,我得好好反思一下.有些同学喜欢跟老师抬杠,这让我非常苦恼,还有上课随意插话,如李正一,许小斌,周贤达,还有同学上课说话如王翔.17,18班的情况比12,13班好,但也有一些同学上课讲话.       

1.2 有理数 篇6

  一、教学内容分析

  本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

  二、学习者分析

  七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

  三、教学目标

  1、使学生掌握有理数加法法则,并能运用法则进行计算;

  2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  四、信息技术应用分析

  由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

  五、教学过程

  1、复习提问,引入新知

  通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

  2、出示问题情境、解决新知

  在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

  3、探索发现,归纳新知

  利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

  学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

  4、展示例题、应用新知

  此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

  5、达标训练,巩固新知

  本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

  6、规律总结,升华新知

  本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

  7、作业和运用,拓展新知

  通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

1.2 有理数 篇7

  一 说教材:

  (一) 地位、作用:

  本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册p80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用

  (二) 教学目标:

  1、 知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。

  2、 能力目标:培养学生探究思维能力和分析解决问题的能力

  3、 情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。

  (三) 重点、难点:

  重点:有理数的减法法则,熟练地进行有理数的减法运算

  难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算

  二、说教学方法:

  根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  附教学工具:温度计、投影仪、多媒体

  三、说学法:

  根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

  四、说教学程序:

  (一) 引入课题环节:

  1、 复习有理数的加法法则,为新课的讲授作好铺垫。

  2、 (提问)用算式表示:与-3的和等于-10的数。

  (根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。

  (二)新课讲解环节:

  1、 通过投影仪给出以下算式:

  减法 加法

  (+10)-(+3)=+7 (+10)+(-3)=+7

  让学生比较上面这两个算式并讨论后得出:

  (+10)-(+3)=(+10)+(-3)

  再给出以下算式:

  减法 加法

  (+5)-(+2)=+3 (+5)+(-2)=+3

  继续让学生比较上面这两个算式并讨论后得出:

  (+5)-(+2)=(+5)+(-2)

  从而,它启发我们有理数的减法可以转化成加法进行

  2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。

  文字叙述:减去一个数,等于加上这个数的相反数

  字母表示:a-b=a+(-b) (说明:简明的表示方法,体现字母表示数的优越性,

  实际运算时会更加方便)

  强调运用法则时:被减数不变,减号变加号,减数变成其相反数

  减数变号

  (减法============加法)

  3、出示温度计,用多媒体出现(如p81的图2-20),并进行动画演示,通过求15℃ 比5℃ 高多少?15℃ 比-5℃ 高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本p82的练习1,

  4、通过例题教学使学生巩固方法,初步具备解决问题的能力。

  例1.计算 :(1) (-3)-(-5); (2) 0 - 7

  例2.计算(1) 7.2 - (-4.8) ; (2) (-3 - ) - 5

  说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。

  (三) 巩固练习环节:

  让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。

  (四) 课堂小结环节:(师生共同完成)

  本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)

  (五)布置课后作业:课本p83习题2.6的2、3、4、5的偶数题

  通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。(六)板书设计:(略)

  上一篇:有理数的减法(练习)

  下一篇:没有了

1.2 有理数 篇8

  一、教材分析

  (一) 教材地位、作用

  本课教材所处位置,是小学所学算术范围的第一次扩充,是算术到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。

  基于上面对教材的分析,考虑到学生已有的认知结构、心理特征,结合《新课标》的要求,我确定以下教学目标:

  (二)教学目标

  1、知识与技能目标:把给出的有理数按要求分类;

  2、能力目标:发展正确地进行分类的能力

  3、情感与态度目标:让学生乐于接受社会环境的教学信息,培养学生学习数学的兴趣

  (三)教学重难点

  教学重点:掌握有理数的分类

  教学难点:对负数概念的理解和有理数的分类.

  二、说教法

  为了突出重点,突破难点,因此本节课以设置问题、创设情境为主线,通过师生互相交流和协商的方式展开教学,而在拓展延伸部分以学生的主动探究为主

  三、说学法

  借用生活场景引出问题,从而围绕这一问题进行探索,教师启发引导,及时了解与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,生动形象地展示教学内容,不但可以提高学习效率和质量,而且容易激发学生的学习兴趣和积极性。

  四、教学过程设计

  为达到教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性、自觉性、积极性,本节课教学程序设计如下

  (一)回顾知识

  练习1.把下列各数填入相应的大括号内:+6,,3.8,0,-4,-6.2,,-

  1223.8,1, 72

  正数集合{ }; 负数集合{ } (设计意图:通过练习,起到复习知识的作用。这里主要复习:正负数的分类,为进一步学习做准备。)

  (二)创设问题情境,导入新课

  在日常生活和生产实践中,我们还会遇到很多具有相反意义的量,例如月球表面白天气温可高达零上123℃,夜晚可低到零下233℃,我们规定温度零上为正,则零上123℃记做123℃(或+123℃),零下233℃记做-233℃.同学们能举出一些具有相反意义的量吗?你能用正数、负数表示这些量吗?

  强调:①正、负数能表示具有相反意义的量,注意意义相反,其值任意;②不要混淆“意义相反”与“意义不同”(如上升3度与零下3度). (设计意图:从学生比较熟悉的身边的问题开始,能给学生一种轻松的学习氛围,易于学生学习新知识。)

  (三)探索阶段

  这一环节我将通过三部分来进行

  学生列举:0、-7、5.2、3、5、7、-7、-9、-10,

  议一议 你能说说这些数的特点吗?

  学生回答..................................................

  教师补充:有小学学过的整数、0、分数,也有负整数、负分数

  1、分类数的名称

  1,2,3,4„„叫做正整数;-1,-2,-3,-4„„叫做负整数;0叫做零。 1128,, +5.2(即5)„„叫做正分数; 253

  1614,,-3.3(即3)„„叫做负分数; 327

  得出结论:正整数、负整数和零统称为整数;正分数和负分数统称为分数。

  整数正整数、负整数和零整数和分数统称有理数。即有理数

  分数正分数、负分数

  2.有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:

  (1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:

  正整数整数零负整数 有理数正分数分数负分数

  (2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类

  正整数正有理数正分数 有理数零

  负整数负有理数负分数

  3.数的集合

  我们曾经把所有正数组成的集合,叫做正数集合;所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

  (设计意图:通过对以上三部分的讲解,突出本节课的重点,使学生掌握有理数的分类和数的集合)

  (四)拓展阶段

  练习:(1)把有理数6.4,-9,123,+10,,-0.021,-1,7,-8.5,334

  25,0,100按正整数、负整数、正分数、负分数分成四个集合。

  正整数集合

  正分数集合,负整数集合,负分数集合 

  (2)把下列有理数:-3,+8,

  应的集合:

  整数集合11,+0.1,0,,-10,5,-0.7填入相32,分数集合

  正数集合,负数集合 (设计意图:及时巩固所学知识)

  (五)全课小结,完善新知

  在这一环节中,我将引导学生回顾本节课所学的内容,结合本节课的教学目标,归纳总结出本节课的知识要点:有理数的分类方法和数的集合;从而起到了对本节课巩固深化的作用

  (六) 最后布置本节课的作业

  (1)整数和分数统称为____;整数包括___、___ 和零,分数包括____和_____。

  (2)把下列各数填入相应集合的持号内:

  -3,4,-0.5,0,8.6,-7

  整数集合

  正有理数集合,分数集合,负分数集合, 

  (设计意图:课外作业是整个学习环节中不可少的一环,课外作业的布置有利于发展学生知识整合的能力,使学生在完成作业的过程中尽可能综合学习并运用知识。)

1.2 有理数 篇9

  1.4.1有理数的乘法(第一课时)

  1.教材分析

  1.1教材的地位与作用

  教材借助归纳验证的数学思想,结合学生已有知识,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。然后通过具体例子说明如何具体运用法则进行计算。接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。

  1.2教材的重难点分析 1.2.1教学重点

  运用有理数乘法法则正确进行计算。 1.2.2教学难点

  有理数乘法法则的探索过程,符号法则及对法则的理解。 2.教学目标分析 2.1知识与技能

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算,并初步理解有理数乘法法则的合理性;

  2.2过程与方法

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 2.3 情感态度与价值观

  通过教材给出的气温变化问题,让学生认识到数学来源于实践并反作用于实践。 3.学情分析

  本节课是学生在小学本已学过正数与零的乘法运算,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。因此,在探索有理数乘法法则的过程中,学生会比较容易找出规律,对于几个不为0的有理数相乘,学生也容易抓住其运算的两步骤,即先定符号,再将绝对值相乘。

  附:板书设计

  “有理数乘法法则”的教学设计,一般有两类:一是列举简单事例,尽快给出法则,组织学生用较多的是练习法则、背法则,以求熟练地掌握和运用法则;另一类是让学生体验法则的探索过程,注重培养学生的观察问题、发现问题的`能力,猜测,验证的能力。引入部分以及归纳、有理数相乘的法则

  前一类可能会取得较好的近期效果,但只注重知识技能的培养,忽视了学生数学能力的培养

  有理数乘法两步骤 练习处

  和发展;后者不仅重视了学生思维能力及素质的培养,还能提高学生的学习兴趣。本数学设计采用的是较为适中的方法,没有教材中引入的那么繁琐,但同时兼顾了上述两类设计的优点。

  “有理数乘法法则”的教学,在性质上属于定义教学,看似容易,但实际上却是难教又难学。半课例采用的是让学生观察、实践、合作探讨、发现的探索式学习方法,引导学生独立思考,合作交流,体验数学问题解决的过程,学会如何归纳和总结。

  “有理数乘法法则”的教学中,必须解决的3个难点是:如何自然地引入带有负数的乘法;怎样体现负负得正的合理性与必要性;怎样说明有理数与1和0相乘的结果。

  在整个教学过程中,教师始终注意运用多种形式调动学生的学习积极性和主动性,以自主学习、合作交流的方式,把学习的主动权交给了学生,使学生成为学习的主体,激发学习积极性。通过小组比赛和个人抢答,既培养了合作精神,又增强了竞争意识。

  在数学教学中,不仅要求学生掌握基础知识的应用技能,而且要重视对学生的数学思维

  方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题。体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信心,从而积极参加与数学学习活动,激发学生强烈的求知欲。

1.2 有理数 篇10

  教学目标 

  1.理解掌握法则,会将运算转化为加法运算;

  2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力.

  3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

  教学建议

  (一) 重点、难点分析

  本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

  (二)知识结构

  (三)教法建议

  1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

  3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

  4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.理解掌握法则.

  2.会进行运算.

  (二)能力训练点

  1.通过把减法运算转化为加法运算,向学生渗透转化思想.

  2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

  3.通过运算,培养学生的运算能力.

  (三)德育渗透点

  通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

  二、学法引导

  1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

  2.学生学法:探索新知→归纳结论→练习巩固.

  三、重点、难点、疑点及解决办法

  1.重点:有理数减法法则和运算.

  2.难点:有理数减法法则的推导.

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片.

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

  七、教学步骤 

  (一)创设情境,引入新课

  1.计算(口答)(1); (2)-3+(-7);

  (3)-10+(+3); (4)+10+(-3).

  2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃.

  师:能不能列出算式计算呢?

  生:10-(-5).

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

  【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题―.

  (二)探索新知,讲授新课

  1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7.

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7.

  师:让学生观察两式结果,由此得到

  (+10)-(+3)=+10)+(-3). (1)

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

  生:可以.

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的相反数(-3).

  【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

  2.再看一题,计算(-10)-(-3).

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

  教师给另外一个问题:计算(-10)+(+3).

  生:(-10)+(+3)=-7.

  教师引导、学生观察上述两题结果,由此得到:

  (-10)-(-3)=(-10)+(+3). (2)

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3).

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

  【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

  师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

  学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

  师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

  教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

  【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

  4.例题讲解:

  [出示投影1 (例题1、2)]

  例1  计算(1)(-3)-(-5); (2)0-7;

  例2  计算(1)7.2-(-4.8); (2)-.

  例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

  例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

  【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

  师:组织学生自己编题,学生回答.

  【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

  (三)尝试反馈,巩固练习

  师:下面大家一起看一组题.

  [出示投影2 (计算题1、2)]

  1.计算(口答)

  (1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

  (4)(-4)-9 (5)0-(-5); (6)0-5.

  2.计算

  (1)(-2.5)-5.9; (2)1.9-(-0.6);

  (3)-; (4)-.

  学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

  【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

  用实物投影显示课本第45页的画面.

  3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

  生答:8848-(-392)=8848+392=9240.

  所以两地高度相差9240米.

  【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

  (四)课堂小结

  提问:通过本节课学习你学到了什么?生答:略.

  师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

  八、随堂练习

  1.填空题

  (1)3-(-3)=____________; (2)(-11)-2=______________;

  (3)0-(-6)=____________; (4)(-7)-(+8)=____________;

  (5)-12-(-5)=____________; (6)3比5大____________;

  (7)-8比-2小___________; (8)-4-( )=10;

  (9)如果,,则的符号是___________;

  (10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

  2.判断题

  (1)两数相减,差一定小于被减数.( )

  (2)(-2)-(+3)=2+(-3).( )

  (3)零减去一个数等于这个数的相反数.( )

  (4)方程在有理数范围内无解.( )

  (5)若,,,.( )

  九、布置作业 

  (一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

  (二)选做题:课本第84页中5、8.

  十、板书设计 

  随堂练习答案.

  1.(1)6; (2)-13; (3)6; (4)-15;

  (5)-7; (6)-2; (7)6; (8)-4;

  (9)+; (10)8848-(-155).

  2.× × √ × √

  作业 答案

  (一)必做题:2.(2)102;(4)-68;(6)-210;(8)92

  3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11

  4.(2);(4);(6);(8)

  (二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)

  8.(1)4;(2)5;(3)7;(4)5

1.2 有理数 篇11

  有理数的混合运算(二)

  教学目标 

  1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;

  2.培养学生的运算能力及综合运用知识解决问题的能力.

  教学重点和难点

  重点:有理数的运算顺序和运算律的运用.

  难点:灵活运用运算律及符号的确定.

  课堂教学过程 设计

  一、从学生原有认知结构提出问题

  1.叙述有理数的运算顺序.

  2.三分钟小测试

  计算下列各题(只要求直接写出答案):

  (1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

  (5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

  (9)-22÷(-3)2;(10)-(-3)2・(-2)3;(11)(-2)4÷(-1);

  二、讲授新课

  例1  当a=-3,b=-5,c=4时,求下列代数式的值:

  (1)(a+b)2;  (2)a2-b2+c2;

  (3)(-a+b-c)2;  (4) a2+2ab+b2.

  解:(1)  (a+b)2

  =(-3-5)2  (省略加号,是代数和)

  =(-8)2=64;  (注意符号)

  (2)  a2-b2+c2

  =(-3)2-(-5)2+42  (让学生读一读)

  =9-25+16  (注意-(-5)2的符号)

  =0;

  (3)  (-a+b-c)2

  =[-(-3)+(-5)-4]2  (注意符号)

  =(3-5-4)2=36;

  (4)a2+2ab+b2

  =(-3)2+2(-3)(-5)+(-5)2

  =9+30+25=64.

  分析:此题是有理数的混合运算,有小括号可以先做小括号内的,

  =1.02+6.25-12=-4.73.

  在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写

  例4  已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值.

  :由题意,得a+b=0,cd=1,|x|=2,x=2或-2.

  所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

  =x2-x-1.

  当x=2时,原式=x2-x-1=4-2-1=1;

  当x=-2时,原式=x2-x-1=4-(-2)-1=5.

  三、课堂练习

  1.当a=-6,b=-4,c=10时,求下列代数式的值:

  2.判断下列各式是否成立(其中a是有理数,a≠0):

  (1)a2+1>0;  (2)1-a2<0;

  四、作业 

  1.根据下列条件分别求a3-b3与(a-b)・(a2+ab+b2)的值:

  2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:

  3.计算:

  4.按要求列出算式,并求出结果.

  (2)-64的绝对值的相反数与-2的平方的差.

  5*.如果|ab-2|+(b-1)2=0,试求

  课堂教学设计说明

  1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练.

  2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径.

  有理数的混合运算(二)

  教学目标 

  1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;

  2.培养学生的运算能力及综合运用知识解决问题的能力.

  教学重点和难点

  重点:有理数的运算顺序和运算律的运用.

  难点:灵活运用运算律及符号的确定.

  课堂教学过程 设计

  一、从学生原有认知结构提出问题

  1.叙述有理数的运算顺序.

  2.三分钟小测试

  计算下列各题(只要求直接写出答案):

  (1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

  (5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

  (9)-22÷(-3)2;(10)-(-3)2・(-2)3;(11)(-2)4÷(-1);

  二、讲授新课

  例1  当a=-3,b=-5,c=4时,求下列代数式的值:

  (1)(a+b)2;  (2)a2-b2+c2;

  (3)(-a+b-c)2;  (4) a2+2ab+b2.

  解:(1)  (a+b)2

  =(-3-5)2  (省略加号,是代数和)

  =(-8)2=64;  (注意符号)

  (2)  a2-b2+c2

  =(-3)2-(-5)2+42  (让学生读一读)

  =9-25+16  (注意-(-5)2的符号)

  =0;

  (3)  (-a+b-c)2

  =[-(-3)+(-5)-4]2  (注意符号)

  =(3-5-4)2=36;

  (4)a2+2ab+b2

  =(-3)2+2(-3)(-5)+(-5)2

  =9+30+25=64.

  分析:此题是有理数的混合运算,有小括号可以先做小括号内的,

  =1.02+6.25-12=-4.73.

  在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写

  例4  已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值.

  :由题意,得a+b=0,cd=1,|x|=2,x=2或-2.

  所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

  =x2-x-1.

  当x=2时,原式=x2-x-1=4-2-1=1;

  当x=-2时,原式=x2-x-1=4-(-2)-1=5.

  三、课堂练习

  1.当a=-6,b=-4,c=10时,求下列代数式的值:

  2.判断下列各式是否成立(其中a是有理数,a≠0):

  (1)a2+1>0;  (2)1-a2<0;

  四、作业 

  1.根据下列条件分别求a3-b3与(a-b)・(a2+ab+b2)的值:

  2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:

  3.计算:

  4.按要求列出算式,并求出结果.

  (2)-64的绝对值的相反数与-2的平方的差.

  5*.如果|ab-2|+(b-1)2=0,试求

  课堂教学设计说明

  1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练.

  2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径.

1.2 有理数 篇12

  学习目标

  1. 理解除法的意义,理解除法是乘法的逆运算,理解倒数的意义,掌握有理数的除法法则.

  2. 熟练地进行有理数的除法运算;

  3. 借助有理数乘法知识,通过归纳、类比等方法获得有理数的除法法则.

  重点 有理数的除法法则

  难点 理解商的符号及其绝对值与被除数和除数的关系

  教学过程

  一、自主学习

  (一)、自学课文

  (二)、导学练习

  1. 小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?

  放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?

  从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?

  2.请找出下列有理数的倒数

  -4 3 -8 - -1 -3.5

  3.比较大小:8(-4)_______8 (-15)3_______(-15)

  (-1 )(-2) (-1 )(- )

  计算:(1)(-15)(-3)= (2)(-12)(- )=

  (3)(-8)(- )= (4)0(- )=

  通过比较、计算,你能归纳出有理数的除法法则吗?

  有理数的除法法则:

  (或换一种表达方法为):

  用字母表示除法法则:

  4.课本第35页练习题

  (三)自学疑难摘要:

  组长检查等级: 组长签名:

  二、合作探究

  例1 计算:

  (1)(-18)6 (2) (- )

  (3) (4)-3.5 (- )

  注意:乘除混合运算该怎么做呢?

  例2化简下列分数:

  (1) (2)

  请思考:商的符号及绝对值同被除数和除数有什么关系?

  三、展示提升

  1、每个同学自主完成二中的练习后先在小组内交流讨论。

  2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

  3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

  四、反馈与检测

  1.计算84(-7)等于( ).

  A.-12 B.12 C.-14 D.14

  2.- 的倒数是( ).

  A.- B. C. D.-2

  3.下列说法错误的是( ).

  A.任何有理数都有倒数 B.互为倒数的两数的积等于1

  C.互为倒数的两数符号相同 D.1和其本身互为倒数

  4.计算: (1)(-40)(-12) (2)(-60)(+3 )

  (3)(-30 )(-15) (4)(-0.33)(+ )(-9)

  (5)(-2 )(-5)(-3 ) (6)(-81)2 (-16)

  5.(1)两数的积是1,已知一数是-2 ,求另一数.

  (2)两数的商是-3 ,已知被除数4 ,求除数.

  6.解下列方程:

  (1)-3.4x=-6.8 (2)- x=-

  7.课本第36页练习题

  组长检查等级: 组长签名:

  小结:通过这节课的学习,你学到了哪些知识?还有哪些地方不懂?请说出来

1.2 有理数 篇13

  数学大纲的基础上确定本节课的教学目标 、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

  2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范 围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标 、重点和难点。(结合微机显示)

  教学大纲是我们确定教学目标 ,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标 。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2、能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想;(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。

  二、教材处理

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥

221381
领取福利

微信扫码领取福利

1.2 有理数(通用13篇)

微信扫码分享