欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 8.1 二元一次方程组(精选13篇)

8.1 二元一次方程组(精选13篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

8.1 二元一次方程组(精选13篇)

8.1 二元一次方程组 篇1

  教学建议

  一、重点、难点分析

  本节教学的重点是使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.难点是了解的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作的解.用大括号来表示的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.

  二、知识结构

  本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、(用描述的语言)以及的解等概念.

  三、教法建议

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入  课题,并引入二元一次方程和的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及.

  3.通过的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验的解的问题.

  4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如

  和矛盾方程组如

  等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

  之类的是可以的,这时可以告诉学生,方程(1)中未知数 的系数为0,方程(1)也看作一个二元一次方程.

  教学设计示例

  一、素质教育目标

  (-)知识教学

  1.了解二元一次方程、和它的解的概念.

  2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.

  3.会检验一对数值是不是某个的解.

  (二)能力训练点

  培养学生分析问题、解决问题的能力和计算能力.

  (三)德育渗透点

  培养学生严格认真的学习态度.

  (四)美育渗透点

  通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.

  二、学法引导

  1.教学方法:讨论法、练习法、尝试指导法.

  2.学生学法:理解二元一次方程和及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.

  三、重点・难点・疑点及解决办法

  (-)重点

  使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.

  (二)难点

  了解的解的含义.

  (三)疑点及解决办法

  检验一对未知数的值是否为某个的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入  课题,并引入二元一次方程和的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及.

  3.通过的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验的解的问题.

  七、教学步骤

  (-)明确目标

  本节课的教学目标为理解二元一次方程及的概念并会判断一对未知数的值是否为的解.

  (二)整体感知

  由复习方程及其解,导入  二元一次方程及的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验解的问题.

  (三)教学过程

  1.创设情境、复习导入  

  (1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?

  回答老师提出的问题并自由举例.

  【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.

  (2)列一元一次方程求解.

  香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

  学生活动:思考,设未知数,回答.

  设买了香蕉 千克,那么苹果买了 千克,

  根据题意,得

  解这个方程,得

  答:小华买了香蕉3千克,苹果6千克.

  上面的问题中,要求的是两个数,能不能同时设两个未知数呢?

  设买了香蕉 千克,买了苹果 千克,根据题意可得两个方程

  观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?

  观察、讨论、举手发言,总结两个方程的共同特点.

  方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.

  这节课,我们就开始学习与二元一次方程密切相关的知识―.

  【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.

  2.探索新知,讲授新课

  (1)关于二元一次方程的教学.

  我们已经知道了什么是二元一次方程,下面完成练习.

  练习一

  判断下列方程是否为二元一次方程,并说明理由.

  ① ② ③

  ④ ⑤ ⑥

  练习二

  分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.

  学生活动:以抢答形式完成练习1,指定几组同学完成练习2.

  【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.

  练习三

  课本第6页练习1.

  提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数( 或 )每取一个值,另一个未知数( 或 )就有惟一的值与它相对应.

  练习四

  填表,使上下每对 、 的值满足方程 .

  -2

  0

  0.4

  2

  -1

  0

  3

  师生共同总结方法:已知 ,求 ,用含有 的代数式表示 ,为 ;已知 ,求 ,用含有 的代数式表示 ,为 .

  【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解奠定了基础.

  (2)关于的教学.

  上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成

  这两个方程合在一起,就组成了一个.

  方程组各方程中,同一字母必须代表同一数量,才能合在一起.

  练习五

  已知 、 都是未知数,判别下列方程组是否为?

  ① ②

  ③ ④

  【教法说明】练习五有助于学生理解的概念,目的是避免学生对形成错误的认识.

  对于前面的问题,列要比列一元一次方程容易些.根据前面解得的结果可以知道,买了香蕉3千克,苹果6千克,即 , ,这里 , 既满足方程①,又满足方程②,我们说

  是

  的解.

  学生活动:尝试总结的解的概念,思考后自由发言.

  教师纠正、指导后板书

  使的两个方程左、右两边的值都相等的两个未知数的值,叫做的解.

  例题  判断 是不是 的解.

  学生活动:口答例题.

  此例题是本节课的重点,通过这个例题,使学生明确地认识到:的解必须同时满足两个方程;同时,培养学生认真的计算习惯.

  3.尝试反馈,巩固知识

  练习:(1)课本第6页第2题  目的:突出本节课的重点.

  (2)课本第7页第1题  目的:培养学生计算的准确性.

  4.变式训练,培养能力

  练习:(1)P8 4.

  【教法说明】使学生更深刻地理解的解的概念,并为解打下基础.

  (2)P8 B组1.

  【教法说明】为列找等量关系打下基础,培养了学生分析问题、解决问题的能力.

  (四)总结、扩展

  1.让学生自由发言,了解学生这节课有什么收获.

  2.教师明确提出要求:弄懂二元一次方程、和它的解的含义,会检验一对数值是不是某个的解.

  3.中考热点:中考中有时会出现检验某个坐标点是否在一次函数解析式上的问题.

  八、布置作业 

  (一)必做题:P7 3.

  (二)选做题:P8 B组2.

  (三)预习:课本第9~13页.

  参考答案

  略.

8.1 二元一次方程组 篇2

  教学建议

  一、重点、难点分析

  本节教学的重点是使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.难点是了解的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作的解.用大括号来表示的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.

  二、知识结构

  本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、(用描述的语言)以及的解等概念.

  三、教法建议

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入  课题,并引入二元一次方程和的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及.

  3.通过的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验的解的问题.

  4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如

  和矛盾方程组如

  等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

  之类的是可以的,这时可以告诉学生,方程(1)中未知数 的系数为0,方程(1)也看作一个二元一次方程.

  教学设计示例

  一、素质教育目标

  (-)知识教学点

  1.了解二元一次方程、和它的解的概念.

  2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.

  3.会检验一对数值是不是某个的解.

  (二)能力训练点

  培养学生分析问题、解决问题的能力和计算能力.

  (三)德育渗透点

  培养学生严格认真的学习态度.

  (四)美育渗透点

  通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.

  二、学法引导

  1.教学方法:讨论法、练习法、尝试指导法.

  2.学生学法:理解二元一次方程和及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.

  三、重点・难点・疑点及解决办法

  (-)重点

  使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.

  (二)难点

  了解的解的含义.

  (三)疑点及解决办法

  检验一对未知数的值是否为某个的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入  课题,并引入二元一次方程和的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及.

  3.通过的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验的解的问题.

  七、教学步骤 

  (-)明确目标

  本节课的教学目标 为理解二元一次方程及的概念并会判断一对未知数的值是否为的解.

  (二)整体感知

  由复习方程及其解,导入  二元一次方程及的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验解的问题.

  (三)教学过程 

  1.创设情境、复习导入  

  (1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?

  回答老师提出的问题并自由举例.

  【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.

  (2)列一元一次方程求解.

  香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

  学生活动:思考,设未知数,回答.

  设买了香蕉 千克,那么苹果买了 千克,

  根据题意,得

  解这个方程,得

  答:小华买了香蕉3千克,苹果6千克.

  上面的问题中,要求的是两个数,能不能同时设两个未知数呢?

  设买了香蕉 千克,买了苹果 千克,根据题意可得两个方程

  观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?

  观察、讨论、举手发言,总结两个方程的共同特点.

  方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.

  这节课,我们就开始学习与二元一次方程密切相关的知识―.

  【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.

  2.探索新知,讲授新课

  (1)关于二元一次方程的教学.

  我们已经知道了什么是二元一次方程,下面完成练习.

  练习一

  判断下列方程是否为二元一次方程,并说明理由.

  ① ② ③

  ④ ⑤ ⑥

  练习二

  分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.

  学生活动:以抢答形式完成练习1,指定几组同学完成练习2.

  【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.

  练习三

  课本第6页练习1.

  提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数( 或 )每取一个值,另一个未知数( 或 )就有惟一的值与它相对应.

  练习四

  填表,使上下每对 、 的值满足方程 .

  -2

  0

  0.4

  2

  -1

  0

  3

  师生共同总结方法:已知 ,求 ,用含有 的代数式表示 ,为 ;已知 ,求 ,用含有 的代数式表示 ,为 .

  【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解奠定了基础.

  (2)关于的教学.

  上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成

  这两个方程合在一起,就组成了一个.

  方程组各方程中,同一字母必须代表同一数量,才能合在一起.

  练习五

  已知 、 都是未知数,判别下列方程组是否为?

  ① ②

  ③ ④

  【教法说明】练习五有助于学生理解的概念,目的是避免学生对形成错误的认识.

  对于前面的问题,列要比列一元一次方程容易些.根据前面解得的结果可以知道,买了香蕉3千克,苹果6千克,即 , ,这里 , 既满足方程①,又满足方程②,我们说

  是

  的解.

  学生活动:尝试总结的解的概念,思考后自由发言.

  教师纠正、指导后板书:

  使的两个方程左、右两边的值都相等的两个未知数的值,叫做的解.

  例题  判断 是不是 的解.

  学生活动:口答例题.

  此例题是本节课的重点,通过这个例题,使学生明确地认识到:的解必须同时满足两个方程;同时,培养学生认真的计算习惯.

  3.尝试反馈,巩固知识

  练习:(1)课本第6页第2题  目的:突出本节课的重点.

  (2)课本第7页第1题  目的:培养学生计算的准确性.

  4.变式训练,培养能力

  练习:(1)P8 4.

  【教法说明】使学生更深刻地理解的解的概念,并为解打下基础.

  (2)P8 B组1.

  【教法说明】为列找等量关系打下基础,培养了学生分析问题、解决问题的能力.

  (四)总结、扩展

  1.让学生自由发言,了解学生这节课有什么收获.

  2.教师明确提出要求:弄懂二元一次方程、和它的解的含义,会检验一对数值是不是某个的解.

  3.中考热点:中考中有时会出现检验某个坐标点是否在一次函数解析式上的问题.

  八、布置作业 

  (一)必做题:P7 3.

  (二)选做题:P8 B组2.

  (三)预习:课本第9~13页.

  参考答案

  略.

8.1 二元一次方程组 篇3

  教学目的

  1、使学生二元一次方程、的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

  2、使学生了解二元一次方程、的解的含义,会检验一对数是不是它们的解。

  3、通过和一元一次方程的比较,加强学生的类比的思想方法。通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。

  教学分析

  重点:(1)使学生认识到一对数必须同时满足两个二元一次方程,才是相应的的解。

  (2)掌握检验一对数是否是某个二元一次方程的解的书写格式。

  难点:理解的解的含义。

  突破:启发学生理解概念。

  教学过程 

  一、复习

  1、是什么方程?是什么一元一次方程?一元一次方程的标准形式是什么?它的解如何表达?如何检验x=3是不是方程5x+3(9-x)=33的解?

  2、列方程解应用题:香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了9千克,付款33元。香蕉和苹果各买了多少千克?

  (先要求学生按以前的常规方法解,即设一个未知数,表示出另一个未知数,再列出方程。)

  既然求两种水果各买多少?那么能不能设两个未知数呢?学生尝试设两个未知数,设买香蕉x千克,买苹果y千克,列出下列两个方程:

  x+y=9

  5x+3y=33

  这里x与y必须满足这两个方程,那么又该如何表达呢?数学里大括号表示“不仅……而且……”,因此用大括号把两个方程联立起来:  这又成了什么呢?里面的是不是一元一次方程呢?这就是我们今天要学习的内容。板书课题。

  二、新授

  1、有关概念

  (1)给出二元一次方程的概念

  观察上面两个方程的特点,未知数的个数是多少,含未知数项的次数是多少?你能根据一元一次方程的定义给出新方程的定义吗?教师给出定义(见P5)。

  结合定义对“元”与“次”作进一步的解释:“元”与“未知数”相通,几个元就是指几个未知数,“次”指未知数的最高次数。二元一次方程和一元一次方程都是整式方程,只有整式方程才能说几元几次方程。

  (2)给出的定义。(见P5)式子:

  表示一个,它由方程①、②构成。当某两个未知数相同的成一个时应加上大括号。

  (3)给出的解的定义及表示法。

  三、练习 

  P6练习:1,2。

  四、小结

  1、什么是二元一次方程?什么是?

  2、什么是的解?如何检验一对数是不是某个方程组的解

  五、作业  

  1、P 5.1 A:1(3、4),3,4。

8.1 二元一次方程组 篇4

  8.1 二元一次方程组

  教学目标 1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;

  2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.   

  教学难点 弄懂二元一次方程组解的含义。   

  知识重点 二元一次方程、二元一次方程组及其解的含义。   

  教学过程(师生活动) 设计理念   

  创设情境

  导入课题 幻灯:古老的“鸡兔同笼问题”

  “今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”

  师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?

  学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.

  方案一:算术方法

  把兔子都看成鸡,则多出94-35 × 2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,

  进而鸡有35-12=23只.

  或类似的也可以先求鸡的数量.

  35×4-94=46,46÷2=23

  方案二:列一元一次方程解

  设有x只鸡,则有(35-x)只兔.根据题意,得

  2x十4(35-x)=94.

  (解方程略)

  教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么? 以古老的数学名题引入,可以增强学生的民族自豪感,激发学好数学的感情

  能用方案本来解的学生算术功底比较好,应给予高度赞赏.

  方案二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好铺垫在。   

  分析问题 (一)讨论二元一次方程、二元一次方程组的概念

  师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)

  方案三:设有x只鸡,y只兔,依题意得

  x+y=35,①

  2x+4y=94.②

  针对学生列出的这两个方程,提出如下问题:

  (1)、你能给这两个方程起个名字吗?

  (2)为什么叫二元一次方程呢?

  (3)什么样的方程叫二元一次方程呢?

  结合学生的回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.

  师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?

  定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.

  (二)讨论二元一次方程、二元一次方程组的解的概念

  探究活动:满足x+y=35的值有哪些?请填入表中:

  x

  …

  y

  …

  教师启发:

  (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?

  (2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?

  (3)它与一元一次方程的解有什么区别?

  定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为

  师:那么什么是二元一次方程组的解呢?

  学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.

  定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.

  比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做

  的解记为:

  注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”.

  议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢? 

  引导学生利用一元一次方程进行知识的迁移与奚比,让学生用原有的认知结构去同化新知识,符合建构主义理念

  通过探究活动得出结论:

  1、二元一次方程的解是成对出现的;2、二元一次方程的解有无

  数多个.这与一元一次方程有显

  著的区别.

  通过对比,让学生体脸到从算术方法到代数方法是一种进步.而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担.   

  巩固新知 例1 下列各对数值中是二元一次方程x+2y=2的解是

  (   )

  a     b    c     d 

  解法分析:

  将a、b,c,d中各对数值逐一代人方程检验是否满足方程,选a,b,c.

  变式:其中是二元一次方程组 解是(  )

  解法分析:

  在例1的基础上,进一步检验a、b、c中各对值是否满足方程2x+y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.

  例2(教材102页练习)

  解答过程略

  本例先检验二元一次方程的解,再检脸二元一次方程组的解,符合从简单到复杂的认知规律.使学生更深刻地理解二元一次方程组的解的概念.

  目的在于培养分析等量关系并列方程组的能力;培养观察估算能力;使学生进一步熟悉二元一次方程组及其解的概   

  小结提高 在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.

  本节课学习了哪些内容?你有哪些收获?

  (什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?) 发挥学生主体意识,培养学生归纳小结的能力。   

  布置作业 1、必做题:教科书102页习题8.1第1、2题.

  2、选做题:教科书102页习题8.1第3题.

  3、备选题:

  (1)根据下列语句,列出二元一次方程:

  ①甲数的一半与乙数的 的和为11

  ②甲数和乙数的2倍的差为17

  (2)方程x+2y=7在自然数范围内的解(  )

  a 有无数个 b 有一个 c  有两个d 有三个

  (3)若mx+y=1是关于x,y的二元一次方程,那么m

  的值应是(  )

  a.m≠o b. m=0 c. m是正有理数d. m是负有理数

  (4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快? 

  不同层次的学生根据自身的需要选择不同的备用题,实现不同的人在数学上获得不同的发展的教学理念.   

  本课教育评注(课堂设计理念,实际教学效果及改进设想)   

  本课的设计是从提出“鸡兔同笼”的求解问题人手,激发学生的学习兴趣与民族自豪感,让学生经历从不同角度寻求不同的解决方法的过程,体现出解决问题策略的多样性,激发了学生的学习兴趣.以算术的方法衬托出方程解法的优越性,以列一元一次方程解法衬托出列二元一次方程组解法的优越性,更使学生感到二元一次方程组的引人顺理成章.

  本课内容是在学生已经掌握了一元一次方程的基础知识,初步具有提取数学信息、解决实际问题的能力后展开的.根据建构主义理念,学生完全有能力利用自己原有的知识去同化新知识,主动地将其纳人自己的知识体系中.所以本课的通篇整体设计,突出了一元一次方程的样板作用,让学生在类比中,主动迁移知识,建立起新的概念.使得基础知识和基本技能在学生头脑中留下较深刻的印象是很有必要的。

8.1 二元一次方程组 篇5

  教学建议

  一、重点、难点分析

  本节教学的重点是使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.难点是了解的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作的解.用大括号来表示的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.

  二、知识结构

  本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、(用描述的语言)以及的解等概念.

  三、教法建议

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入  课题,并引入二元一次方程和的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及.

  3.通过的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验的解的问题.

  4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如

  和矛盾方程组如

  等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

  之类的是可以的,这时可以告诉学生,方程(1)中未知数 的系数为0,方程(1)也看作一个二元一次方程.

  教学设计示例

  一、素质教育目标

  (-)知识教学点

  1.了解二元一次方程、和它的解的概念.

  2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.

  3.会检验一对数值是不是某个的解.

  (二)能力训练点

  培养学生分析问题、解决问题的能力和计算能力.

  (三)德育渗透点

  培养学生严格认真的学习态度.

  (四)美育渗透点

  通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.

  二、学法引导

  1.教学方法:讨论法、练习法、尝试指导法.

  2.学生学法:理解二元一次方程和及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.

  三、重点・难点・疑点及解决办法

  (-)重点

  使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.

  (二)难点

  了解的解的含义.

  (三)疑点及解决办法

  检验一对未知数的值是否为某个的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入  课题,并引入二元一次方程和的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及.

  3.通过的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验的解的问题.

  七、教学步骤 

  (-)明确目标

  本节课的教学目标 为理解二元一次方程及的概念并会判断一对未知数的值是否为的解.

  (二)整体感知

  由复习方程及其解,导入  二元一次方程及的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验解的问题.

  (三)教学过程 

  1.创设情境、复习导入  

  (1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?

  回答老师提出的问题并自由举例.

  【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.

  (2)列一元一次方程求解.

  香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

  学生活动:思考,设未知数,回答.

  设买了香蕉 千克,那么苹果买了 千克,

  根据题意,得

  解这个方程,得

  答:小华买了香蕉3千克,苹果6千克.

  上面的问题中,要求的是两个数,能不能同时设两个未知数呢?

  设买了香蕉 千克,买了苹果 千克,根据题意可得两个方程

  观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?

  观察、讨论、举手发言,总结两个方程的共同特点.

  方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.

  这节课,我们就开始学习与二元一次方程密切相关的知识―.

  【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.

  2.探索新知,讲授新课

  (1)关于二元一次方程的教学.

  我们已经知道了什么是二元一次方程,下面完成练习.

  练习一

  判断下列方程是否为二元一次方程,并说明理由.

  ① ② ③

  ④ ⑤ ⑥

  练习二

  分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.

  学生活动:以抢答形式完成练习1,指定几组同学完成练习2.

  【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.

  练习三

  课本第6页练习1.

  提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数( 或 )每取一个值,另一个未知数( 或 )就有惟一的值与它相对应.

  练习四

  填表,使上下每对 、 的值满足方程 .

  -2

  0

  0.4

  2

  -1

  0

  3

  师生共同总结方法:已知 ,求 ,用含有 的代数式表示 ,为 ;已知 ,求 ,用含有 的代数式表示 ,为 .

  【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解奠定了基础.

  (2)关于的教学.

  上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成

  这两个方程合在一起,就组成了一个.

  方程组各方程中,同一字母必须代表同一数量,才能合在一起.

  练习五

  已知 、 都是未知数,判别下列方程组是否为?

  ① ②

  ③ ④

  【教法说明】练习五有助于学生理解的概念,目的是避免学生对形成错误的认识.

  对于前面的问题,列要比列一元一次方程容易些.根据前面解得的结果可以知道,买了香蕉3千克,苹果6千克,即 , ,这里 , 既满足方程①,又满足方程②,我们说

  是

  的解.

  学生活动:尝试总结的解的概念,思考后自由发言.

  教师纠正、指导后板书:

  使的两个方程左、右两边的值都相等的两个未知数的值,叫做的解.

  例题  判断 是不是 的解.

  学生活动:口答例题.

  此例题是本节课的重点,通过这个例题,使学生明确地认识到:的解必须同时满足两个方程;同时,培养学生认真的计算习惯.

  3.尝试反馈,巩固知识

  练习:(1)课本第6页第2题  目的:突出本节课的重点.

  (2)课本第7页第1题  目的:培养学生计算的准确性.

  4.变式训练,培养能力

  练习:(1)P8 4.

  【教法说明】使学生更深刻地理解的解的概念,并为解打下基础.

  (2)P8 B组1.

  【教法说明】为列找等量关系打下基础,培养了学生分析问题、解决问题的能力.

  (四)总结、扩展

  1.让学生自由发言,了解学生这节课有什么收获.

  2.教师明确提出要求:弄懂二元一次方程、和它的解的含义,会检验一对数值是不是某个的解.

  3.中考热点:中考中有时会出现检验某个坐标点是否在一次函数解析式上的问题.

  八、布置作业 

  (一)必做题:P7 3.

  (二)选做题:P8 B组2.

  (三)预习:课本第9~13页.

  参考答案

  略.

8.1 二元一次方程组 篇6

  教学建议

  一、重点、难点分析

  本节教学的重点是使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.难点是了解的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作的解.用大括号来表示的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.

  二、知识结构

  本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、(用描述的语言)以及的解等概念.

  三、教法建议

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入  课题,并引入二元一次方程和的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及.

  3.通过的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验的解的问题.

  4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如

  和矛盾方程组如

  等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

  之类的是可以的,这时可以告诉学生,方程(1)中未知数 的系数为0,方程(1)也看作一个二元一次方程.

  教学设计示例

  一、素质教育目标

  (-)知识教学

  1.了解二元一次方程、和它的解的概念.

  2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.

  3.会检验一对数值是不是某个的解.

  (二)能力训练点

  培养学生分析问题、解决问题的能力和计算能力.

  (三)德育渗透点

  培养学生严格认真的学习态度.

  (四)美育渗透点

  通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.

  二、学法引导

  1.教学方法:讨论法、练习法、尝试指导法.

  2.学生学法:理解二元一次方程和及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.

  三、重点・难点・疑点及解决办法

  (-)重点

  使学生了解二元一次方程、以及的解的含义,会检验一对数值是否是某个的解.

  (二)难点

  了解的解的含义.

  (三)疑点及解决办法

  检验一对未知数的值是否为某个的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入  课题,并引入二元一次方程和的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及.

  3.通过的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验的解的问题.

  七、教学步骤

  (-)明确目标

  本节课的教学目标为理解二元一次方程及的概念并会判断一对未知数的值是否为的解.

  (二)整体感知

  由复习方程及其解,导入  二元一次方程及的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验解的问题.

  (三)教学过程

  1.创设情境、复习导入  

  (1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?

  回答老师提出的问题并自由举例.

  【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.

  (2)列一元一次方程求解.

  香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

  学生活动:思考,设未知数,回答.

  设买了香蕉 千克,那么苹果买了 千克,

  根据题意,得

  解这个方程,得

  答:小华买了香蕉3千克,苹果6千克.

  上面的问题中,要求的是两个数,能不能同时设两个未知数呢?

  设买了香蕉 千克,买了苹果 千克,根据题意可得两个方程

  观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?

  观察、讨论、举手发言,总结两个方程的共同特点.

  方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.

  这节课,我们就开始学习与二元一次方程密切相关的知识―.

  【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.

  2.探索新知,讲授新课

  (1)关于二元一次方程的教学.

  我们已经知道了什么是二元一次方程,下面完成练习.

  练习一

  判断下列方程是否为二元一次方程,并说明理由.

  ① ② ③

  ④ ⑤ ⑥

  练习二

  分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.

  学生活动:以抢答形式完成练习1,指定几组同学完成练习2.

  【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.

  练习三

  课本第6页练习1.

  提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数( 或 )每取一个值,另一个未知数( 或 )就有惟一的值与它相对应.

  练习四

  填表,使上下每对 、 的值满足方程 .

  -2

  0

  0.4

  2

  -1

  0

  3

  师生共同总结方法:已知 ,求 ,用含有 的代数式表示 ,为 ;已知 ,求 ,用含有 的代数式表示 ,为 .

  【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解奠定了基础.

  (2)关于的教学.

  上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成

  这两个方程合在一起,就组成了一个.

  方程组各方程中,同一字母必须代表同一数量,才能合在一起.

  练习五

  已知 、 都是未知数,判别下列方程组是否为?

  ① ②

  ③ ④

  【教法说明】练习五有助于学生理解的概念,目的是避免学生对形成错误的认识.

  对于前面的问题,列要比列一元一次方程容易些.根据前面解得的结果可以知道,买了香蕉3千克,苹果6千克,即 , ,这里 , 既满足方程①,又满足方程②,我们说

  是

  的解.

  学生活动:尝试总结的解的概念,思考后自由发言.

  教师纠正、指导后板书

  使的两个方程左、右两边的值都相等的两个未知数的值,叫做的解.

  例题  判断 是不是 的解.

  学生活动:口答例题.

  此例题是本节课的重点,通过这个例题,使学生明确地认识到:的解必须同时满足两个方程;同时,培养学生认真的计算习惯.

  3.尝试反馈,巩固知识

  练习:(1)课本第6页第2题  目的:突出本节课的重点.

  (2)课本第7页第1题  目的:培养学生计算的准确性.

  4.变式训练,培养能力

  练习:(1)P8 4.

  【教法说明】使学生更深刻地理解的解的概念,并为解打下基础.

  (2)P8 B组1.

  【教法说明】为列找等量关系打下基础,培养了学生分析问题、解决问题的能力.

  (四)总结、扩展

  1.让学生自由发言,了解学生这节课有什么收获.

  2.教师明确提出要求:弄懂二元一次方程、和它的解的含义,会检验一对数值是不是某个的解.

  3.中考热点:中考中有时会出现检验某个坐标点是否在一次函数解析式上的问题.

  八、布置作业 

  (一)必做题:P7 3.

  (二)选做题:P8 B组2.

  (三)预习:课本第9~13页.

  参考答案

  略.

8.1 二元一次方程组 篇7

  一、说教材分析

  1.教材的地位和作用

  二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

  2.教学目标

  知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

  能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

  情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

  3.重点、 难点

  重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

  难点:在实际生活中二元一次方程组的应用。

  二、教法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的.组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

  三、学法

  “问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

  四、教学过程

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1)复习旧知,温故知新

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分、负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

  设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2)创设情境,提出问题

  这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

  由问题知道,题中包含两个必须同时满足的条件:

  胜的场数+负的场数=总场数,

  胜场积分+负场积分=总积分。

  这两个条件可以用方程

  x+y=22

  2x+y=40

  表示:

  上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程。

  把两个方程合在一起,写成:

  x+y=22

  2x+y=40

  像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

8.1 二元一次方程组 篇8

  教学建议

  1.教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:本小节的重点是使学生学会.这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此学生同样会表现出一种极大的兴趣.必须充分利用学生学会这种方法的积极性.加减(消元)法是解二元一次方程组的基本方法之一,因此要让学生学会,并能灵活运用.这种方法同样是解三元一次方程组和某些二元二次方程组的基本方法,在教学中必须引起足够重视.

  难点:灵活运用加减法的技巧,以便将方程变形为比较简单和计算比较简便,这也要通过一定数量的练习来解决.

  2.教法建议

  (1)本节是通过一个引例,介绍了加减法解方程组的基本思想和解题过程.教学时,要引导学生观察这个方程组中未知数系数的特点.通过观察让学生说出,在两个方程中y的系数互为相反数或在两个方程中x的系数相等,让学生自己动脑想一想,怎么消元比较简便,然后引出加减消元法.

  (2)讲完加减法后,课本通过三个例题加以巩固,这三个例题是由浅入深的,讲解时也要先让学生观察每个方程组未知数系数的特点,然后让学生说出每个方程组的解法,例题1老师自己板书,剩下的两个例题让学生上黑板板书,然后老师点评.

  (3)讲解完本节后,教师应引导学生比较代入法与加减法这两种方法,这两种方法虽有不同,但实质都是消元,即通过消去一个未知数,把“二元”转化为“一元”.也就是说:

  这时学生对解题方法比较熟悉,但还没有上升到理论的高度,这时教师应及时点拨、渗透化归转化的思想,并指出这是具有普遍意义的分析问题、解决问题的思想方法.

  教学设计示例

  (第一课时)

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握的步骤.

  2.能运.

  (二)能力训练点

  1.培养学生分析问题、解决问题的能力.

  2.训练学生的运算技巧.

  (三)德育渗透点

  消元,化未知为已知的转化思想.

  (四)美育渗透点

  渗透化归的数学美.

  二、学法引导

  1.教学方法:谈话法、讨论法.

  2.学生学法:观察各未知量前面系数的特征,只要将相同未知量前的系数化为绝对值相等的值后即可利用加减法进行消元,同时在运算中注意归纳解题的技巧和解题的方法.

  三、重点、难点、疑点及解决办法

  (-)重点

  使学生学会.

  (二)难点

  灵活运用加减消元法的技巧.

  (三)疑点

  如何“消元”,把“二元”转化为“一元”.

  (四)解决办法

  只要将相同未知量前的系数化为绝对值相等的值即可利用加减法进行消元.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.教师通过复习上节课代入法解二元一次方程组的方法及其解题思想,引入除了消元法还有其他方法吗?从而导入  新课即加减法解二元一次方程组.

  2.通过引例进一步让学生探究是用代入法还是用加减法解方程组更简单,让学生进一步明确用加减法解题的优越性.

  3.通过反复的训练、归纳、再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论.

  七、教学步骤 

  (-)明确目标

  本节课通过复习代入法从而引入另一种消元的办法,即加减法解二元一次方程组.

  (二)整体感知

  加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可使用加减法消元.故在教学中应反复教会学生观察并抓住解题的特征及办法从而方便解题.

  (三)教学过程 

  1.创设情境,复习导入  

  (1)用代入法解二元一次方程组的基本思想是什么?

  (2)用代入法解下列方程组,并检验所得结果是否正确.

  学生活动:口答第(1)题,在练习本上完成第(2)题,一个同学说出结果.

  上面的方程组中,我们用代入法消去了一个未知数,将“二元”转化为“一元”,从而得到了方程组的解.对于二元一次方程组,是否存在其他方法,也可以消去一个未知数,达到化“二元”为“一元”的目的呢?这就是我们这节课将要学习的内容.

  【教法说明】由练习导入  新课,既复习了旧知识,又引出了新课题,教学过程 中还可以进行代入法和加减法的对比,训练学生根据题目的特点选取适当的方法解题.

  2.探索新知,讲授新课

  第(2)题的两个方程中,未知数 的系数有什么特点?(互为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉 ,得到一个一元一次方程,进而求得二元一次方程组的解.

  解:①+②,得

  把 代入①,得

  ∴

  ∴

  学生活动:比较用这种方法得到的 、 值是否与用代入法得到的相同.(相同)

  上面方程组的两个方程中,因为 的系数互为相反数,所以我们把两个方程相加,就消去了 .观察一下, 的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去 ?(相减)

  学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同.(相同)

  我们将原方程组的两个方程相加或相减,把“二元”化成了“一元”,从而得到了方程组的解.像这种解二元一次方程组的方法叫加减消元法,简称“加减法”.

  提问:①比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)

  ②在什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)

  ③什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)

  【教法说明】这几个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性.

  例1  解方程组

  哪个未知数的系数有特点?( 的系数相等)把这两个方程怎样变化可以消去 ?(相减)

  学生活动:回答问题后,独立完成例1,一个学生板演.

  解:①-②,得

  ∴

  把 代入②,得

  ∴

  ∴

  ∴

  (1)检验一下,所得结果是否正确?

  (2)用②-①可以消掉 吗?(可以)是用①-②,还是用②-①计算比较简单?(①-②简单)

  (3)把 代入①, 的值是多少?( ),是代入①计算简单还是代入②计算简单?(代入系数较简单的方程)

  练习:P23  l.(l)(2)(3),分组练习,并把学生的解题过程在投影仪上显示.

  小结:的条件是某个未知数的系数绝对值相等.

  例2  解方程组

  (1)上面的方程组是否符合用加减法消元的条件?(不符合)

  (2)如何转化可使某个未知数系数的绝对值相等?(①×2或②×3)

  归纳:如果两个方程中,未知数系数的绝对值都不相等,可以在方程两边部乘以同一个适当的数,使两个方程中有一个未知数的系数绝对值相等,然后再加减消元.

  学生活动:独立解题,并把一名学生解题过程在投影仪上显示.

  学生活动:总结的步骤.

  ①变形,使某个未知数的系数绝对值相等.

  ②加减消元.

  ③解一元一次方程.

  ④代入得另一个未知数的值,从而得方程组的解.

  3.尝试反馈,巩固知识

  练习:P23  1.(4)(5).

  【教法说明】通过练习,使学生熟练地并能在练习中摸索运算技巧,培养能力.

  4.变式训练,培养能力

  (1)选择:二元一次方程组 的解是( )

  A. B. C. D.

  (2)已知 ,求 、 的值.

  学生活动:第(1)题口答,第(2)题在练习本上完成.

  【教法说明】第(1)题可以用解方程组的方法得解,也可以把四组值分别代入原方程组中,利用检验的方法解,这道题能训练学生思维的灵活性;第(2)题通过分析,学生可得方程组 从而求得 、 的值.此题可以培养学生分析问题,解决问题的综合能力.

  (四)总结、扩展

  1.的思想:

  2.的条件:某一未知数系数绝对值相等.

  3.的步骤:

  八、布置作业 

  (一)必做题:P24 1.

  (二)选做题:P25 B组1.

  (三)预习:下节课内容.

  参考答案

  (一)(1) (2) (3) (4)

  (二)1.(1)与(4) (2)与(3)

8.1 二元一次方程组 篇9

  教学目标:

  1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

  重点:能根据题意列二元一次方程组;根据题意找出等量关系;

  难点:正确发找出问题中的两个等量关系

  教学过程:

  一、复习

  列方程解应用题的步骤是什么?

  审题、设未知数、列方程、解方程、检验并答

  新课:

  看一看课本99页探究1

  问题:

  1题中有哪些已知量?哪些未知量?

  2题中等量关系有哪些?

  3如何解这个应用题?

  本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg

  (2)(30+12只母牛和(15+5)只小牛一天需用饲料为940

  练一练:

  1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

  2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

  3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

  4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

8.1 二元一次方程组 篇10

  各位评委、老师:

  大家好!我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

  一、说教材

  (一)地位和作用

  本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法――代入消元法。并初步体会解二元一次方程组的基本“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们较大的发挥空间。

  (二) 课程学习目标

  1、会用代入法解二元一次方程组。

  2、初步体会解二元一次方程组的基本――“消元”。

  3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的。

  (三)教学重、难点:

  用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”。

  二、说教法

  针对本节特点,在教学过程中采用自主探究、师友互助交流的教学方法,由教师提出明确问题,学生积极参思考与讨论探究、师友合作交流,进行,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、师友合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

  三、说学法

  本节学生在独立思考、自主探究中学习并对老师的问题展开有师友讨论与交流。如何用代入消元法将“二元”转化“一元”学生较难掌握,在提出消元后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。整个过程可以通过自主探究和师友合作来实现课程目标,此外,教学中,各个环节主要采用独学,对学,群学的方法,随堂练习时应引导学生通过自我反省小组来克服解题时的错误,必要时教师给予规范矫正。

  四、说教学流程

  (一)简单复习

  学师学友面对面,学友说给学师听,什么是二元一次方程(组)?说完后两组师友展示给全班同学听

  (二)自主学习:

  出示学习目标:学生齐读一下,对本课学习有一个大体了解。

  学生认真学习课本P91例题1上面的内容,并回答以下两个问题(电子白板出示)

  1.什么叫消元 2.代入消元法

  学习完成之后学生举手回答,教师。

  (三)合作探究

  电子白板出示问题:

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

  1.师友合作交流,探究新知

  在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组

  学生活动:分别列出一元一次方程和二元一次方程组,

  设胜的场数是x 则负的场数为22-x,列方程得 2x+(22-x)=40

  设胜的场数是x,负的场数是y,列方程组得

  x+y=22

  2x+y=40

  2.自主探究,师友讨论

  那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

  3.学生归纳,教师作补充:

  上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

  把下列方程写成用含x的式子表示y的形式

  (1)2x-y=5(2)4x+3y-1=0

  学生活动:尝试自主完成,教师纠正。思考:能否用含y的式子来表示x呢?

  4、教师来说方法:(2)用代入法解方程组

  x-y=3

  3x-8y=14

  思路点拨:先观察这个方程组中哪一项系数较小,发现中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入消元。

  解:由变形得 X=y+3

  把代入,得3(y+3)-8y=14

  解这个方程,得 y=-1

  把y=-1代入,得X=2

  所以这个方程组的解是 X=2

  y=-1

  如何检验得到的结果是否正确? 学生活动:口答检验。

  步骤:变 代 求 写

  (四)小试牛刀(给你一个展示的舞台)

  解二元一次方程组

  1、 2、

  两名同学到黑板上板演,其他同学在练习本上认真做!(教师巡视学生)

  完成后,教师:解二元一次方程组的方法步骤:

  变 代 求 写

  (五)归纳,知识回顾

  1、通过这节课的学习活动,你有什么收获?

  2、你认为在运用代入法解二元一次方程组时,应注意什么问题?

  (六)布置作业

  作业:中午:课本 第二题1、2小题

  晚上:《作业与测试》。

8.1 二元一次方程组 篇11

  教学建议

  一、重点、难点分析

  本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

  解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

  二、知识结构

  三、教法建议

  1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

  这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

  2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

  3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

  一、素质教育目标

  (一)知识教学

  1.掌握的步骤.

  2.熟练运用代入法解简单的二元一次方程组.

  (二)能力训练点

  1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

  2.训练学生的运算技巧,养成检验的习惯.

  (三)德育渗透点

  消元,化未知为已知的数学思想.

  (四)美育渗透点

  通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

  二、学法引导

  1.教学方法:引导发现法、练习法,尝试指导法.

  2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法.

  三、重点、难点、疑点及解决办法

  (-)重点

  使学生会.

  (二)难点

  灵活运用代入法的技巧.

  (三)疑点

  如何“消元”,把“二元”转化为“一元”.

  (四)解决办法

  一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

  2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

  3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

  七、教学步骤

  (-)明确目标

  本节课我们将学习用代入法求二元一次方程组的解.

  (二)整体感知

  从复习用一个未知量表达另一个未知量的方法,从而导入  运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

  (三)教学步骤

  1.创设情境,复习导入  

  (1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

  (2)选择题:

  二元一次方程组 的解是

  A. B. C. D.

  【教法说明】 第(1)题为打下基础;第(2)题既复习了上节课的重点,又成为导入  新课的材料.

  通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

  这样导入  ,可以激发学生的求知欲.

  2.探索新知,讲授新课

  香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

  学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

  设买了香蕉 千克,那么苹果买了 千克,根据题意,得

  设买了香蕉 千克,买了苹果 千克,得

  上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到    ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

  解:由①得:      ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  【教法说明】解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

  上面解二元一次方程组的方法,就是代入消元法.你能简单说说的基本思路吗?

  学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

  例1  解方程组

  (1)观察上面的方程组,应该如何消元?(把①代入②)

  (2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

  (3)求出 后代入哪个方程中求 比较简单?(①)

  学生活动:依次回答问题后,教师板书

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何检验得到的结果是否正确?

  学生活动:口答检验.

  教师:要把所得结果分别代入原方程组的每一个方程中.

  【教法说明】给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

  例2  解方程组

  要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

  学生活动:尝试完成例2.

  教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

  解:由②,得     ③

  把③代入①,得

  ∴ 

  ∴

  把 代入③,得

  ∴

  ∴

  检验后,师生共同讨论:

  (1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

  (2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

  学生活动:根据例1、例2的解题过程,尝试总结的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

  教师板书

  (1)变形( )

  (2)代入消元( )

  (3)解一元一次方程得( )

  (4)把 代入 求解

  练习:P13  1.(1)(2);P14  2.(1)(2).

  3.变式训练,培养能力

  ①由 可以得到用 表示 .

  ②在 中,当 时, ;当 时, ,则 ; .

  ③选择:若 是方程组 的解,则( )

  A. B. C. D.

  (四)总结、扩展

  1.解二元一次方程组的思想: .

  2.的步骤.

  3.的技巧:①变形的技巧②代入的技巧.

  通过这节课的学习,我们要熟练运,并能检验结果是否正确.

  八、布置作业 

  (一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

  (二)选做题:P15 B组1.

  参考答案

  (一)1.(2) (4)

  2.(1) (2) (3) (4)

  (二) ,

8.1 二元一次方程组 篇12

  一、 关于教材地位和作用的分析

  《 二元一次方程组的解法(5)》是在前面学习了列一元一次方程解应用题及二元一次方程组的解法(代入消元法和加减消元法)基础上的一节综合实际应用课。借助二元一次方程组解决一些简单的实际问题,这是数学联系实际的一个重要方面。对于含有多个未知数的实际问题,利用方程组去解决,其分析方法和解题步骤与列一元一次方程类似,而在列方程方面常比列一元一次方程容易些。教材在让学生在掌握了二元一次方程组的解法后,再次体验二元一次方程组与现实生活的联系和作用。通过本节课的教学,可使学生领悟到数学来源与实践,又反过来作用于实践的辨证唯物主义思想。这对学生进一步学习数学,将起到积极的作用。

  二、 关于教学目标的确定

  (一) 目标分析

  知识和技能目标:

  1、 会根据具体问题中的数量关系列出二元一次方程组及求解

  2、 能检验结果是否符合实际意义

  过程和方法目标

  1、 通过使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性

  2、 在列方程组解应用题的过程中,体会列方程组往往比列一元一次方程容易。

  3、 通过解应用题的学习,渗透把未知转化为已知的辨证思想,从而培养学生分析问题和解决问题的能力

  情感与态度目标

  1、 学生在与同伴交流的学习过程中,形成良好的学习方式和学习态度,树立学习数学的自信心。

  2、 通过列方程组解应用题的学习,认识到数学的价值。

  (二) 重难点分析

  教学重点:根据实际问题的数量关系,找出两个等量关系,列出二元一次方程组。

  教学难点:正确找出两个实际问题中的两个等量关系,并把他们列成两个方程。

  难点突破采取的措施:

  1、 可多种方法解决的实际问题引入,然后由师生共同寻找两个等量关系,多次体验列二元一次方程组解决实际问题的优越性

  2、 用填空和选择的多种题型来寻找题目中的等量关系

  3、 例题中两个问题将它们分列开,将难点分散

  三、 关于教学方法的说明

  从一题多解的和尚吃馒头的引入开始,引导学生寻找等量关系,在合作中寻找解题途径,教师在此过程中做好一个组织者,合作者,引导者的作用,关注学生在此过程中的生命成长。帮助学生在方程探案中寻找等量关系,然后找到等量关系后,让学生尝试根据等量关系来列二元一次方程组解决问题,接着让学生在填空和选择中寻找等量关系,列方程组,最后是课本例题的教学,让学生自己寻找问题和分析问题,课外,让学生自己编题,领悟方法,这种教学方法符合以下教育过程的规律:

  1、 遵循由旧引新,由浅入深,由特殊到一般再到特殊。体现掌握知识和发展智力相统一的规律。

  2、 创设问题情境,教师不断启发和引导学生思考,由易到难,化整为简,体现教师在教学过程中的组织者、合作者和引导者的作用。

  (二)学法分析

  这种教学方法实际上也教给了学生一种学习方法,使学生学会观察,注意生活中的实际问题,学会自己探究知识分析问题,解决问题,学会寻找、发现,学会归纳总结,逐步掌握获取知识的能力。

  (三)教学手段

  通过多媒体辅助教学,扩大教学容量,提高课堂教学效率。

  四、 关于教学过程的设计。

  (一) 导入设计

  先用轻松的师生对白,让学生进入问题,讨论多种方法解决实际问题,激活学生的思维细胞,让学生进入学习的状态,通过体验新知识的优越性,激发学生学习新知识的积极性。

  (二) 尝试练习

  通过导入中的体验,让学生初步尝试解决问题的能力,在此过程中,有学生成功了,他们尝到了学习新知识的一种成就感,有学生失败了,鼓励他们继续学习,培养克服困难的信心和勇气。

  尝试练习

  1、方程探案记: 你知道盗贼如何分赃吗

  一帮强盗抢来一批布匹,躲在了树林里分赃,由于傍晚天色太黑,看不清他们有多少人,只听见带头的一个强盗喊着说:“每人分布六匹,还剩5匹,每人分布7匹,又少8匹。“请你根据他的说话声来判断,究竟有多少强盗,多少布匹?

  大家一起探讨

  (三) 范例设计

  通过对课本例题的难点进行分解,把一个较复杂的问题,分解成两个小问题,将难点分解。

  某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。该公司的加工能力是:每天可以精加工6吨或粗加工16吨。现计划用15天完成加工任务。

  问:1、该公司应安排几天粗加工,几天精加工, 才能按期完成任务?

  2、如果每吨蔬菜粗加工后的利润为1000元,精加工后为20__元,那么照此安排,该公司出售这些加工后的蔬菜共可获利多少元?

  (四)反馈练习

  通过多种题型:填空、选择及问答的多种形式,培养学生从多角度地分析问题、解决问题的能力。最后,让学生根据课题来自编应用题,体现了数学在实际中的应用价值。

  (五) 归纳小结

  教师启发,学生归纳列二元一次方程组解应用题的一般步骤和方法。

8.1 二元一次方程组 篇13

  一、内容分析

  1.1学习任务分析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的核心概念。它既是一元一次方程的延续,又是三元一次方程组的基础。

  1.2学生情况分析:就方程而言,初一学生已有一元一次方程的有关知识。所以本节课将引导学生自己发现新的方程并尝试通过类比“发现”有关新概念,使学生逐步建立方程的知识体系。但对学生来说二元一次方程组的解的表达形式是陌生的,对他们来说正确写出解并理解其含义具有一定的难度。

  二、学习目标设计

  知识目标:使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的概念。能辨别那些是二元一次方程(组),并能正确的写出他们的解

  能力目标:通过尝试命名新方程、尝试“发明”有关概念,培养学生知识移的能力,并从初一开始养成建立知识体系的习惯。通过学生自己设计问题,充分发挥其主体性,培养创新意识。

  情感目标:体验数学发现中的快乐,激发学生自主学习的乐趣。

  重点 二元一次方程(组)及二元一次方程(组)的解的概念。

  难点 理解、判断二元一次方程(组)的解,并能用正确的形式表达二元一次方程(组)的解。

  三、课堂结构设计

  动手实验,引导学生发现问题(课题)、尝试命名和定义

  练习反馈

  结合实验,引导学生设计问题并发现方程组

  练习反馈

  引导学生在巩固中更好的理解概念

  分层练习,引导学生积极探索

  回归实验,学生完善自己的设计

  四、教学媒体设计

  充分利用PPT演示文稿的高效性、板书的实效性和可留性以及事物演示的直观性,将它们有机结合,各取其长。

  五、教学过程设计

  5.1动手实验,引导学生发现问题(课题)、尝试命名和定义。

  实验情境:请学生将手中40厘米长的绳子绷成一个长方形。(课前结已打好,所占长度忽略不计)

  相互交流:学生相互交流所绷成的长方形是否完全相同,有何异同之处。

  (异:各自的长和宽不同;同:周长都是40厘米。)得出实验结论:周长为40厘米的长方形有无数个。(同时借助多媒体演示实验过程与结论)

  引出课题:如果宽设为x厘米,长设为y厘米,你能发现x和y的关系么?(x+y=20)。学生会感觉这个式子既熟悉又陌生。熟悉的是这是个方程,陌生的是它是什么方程。引导学生将它与已学的一元一次方程作比较,(未知数的个数不同),进而请学生尝试给这样的方程命名,并给出命名的理由。(二元一次方程)。引出课题。并且由学生仿照一元一次方程的定义尝试定义二元一次方程。

  二元一次方程的解:请学生说出二元一次方程的解的定义,(使二元一次方程左右两边相等的两个未知数的值)。强调是两个未知数的值。

  就x+y=20这个方程而言,它的解是多少呢?学生发现有无数个,

  如x=1,y=19;x=2,y=18;通过设问x=1时,y还能取什么值?让学生理

  解虽有无数个解,但x和y是相互制约的.,所以前面要加 , x=1 这

  y=19

  一对值就是这个二元一次方程的一个解。并请学生规范的写出一些解。

  这无数个解都适合这个长方形问题么?学生讨论后可得出,负数不行,小数可以,所以长方形问题仍然是无数个解,从而用方程解的知识解释了实验的结论。

  最终用数学知识解释了实验的结论。

  设计说明:实验与二元一次方程相对应,实验的结果与二元一次方程的无数个解相对应。每位学生都参与到实验中,用心感受x、y间的关系,激发探索数学知识的乐趣。并且这个实验将作为一条主线贯穿整个课堂。

  学生自己发现、命名二元一次方程以及概念的知识基础是一元一次方程,知识迁移的要求不高,具有可行性。

  练习1:下列哪些是二元一次方程,哪些不是?

  ① ②

  ③ ④

  学生回答,并紧扣定义说明理由。

  设计说明:牢抓二元、一次、方程三个关键词,设计问题,及时巩固定义。

  请学生一元一次方程和二元一次方程的区别和联系。

  练习2:写出二元一次方程 y-x=10 的一些解。

  设计说明:在讲解解的问题中有三个关键点:1、二元一次方程的解有无数个;2、每一个解由x和y这一对相互制约的值组成;3、解的书写格式。并通过练习反馈掌握情况。

  5.2结合实验,引导学生设计问题并发现方程组。

  5.2.1二元一次方程组的定义

  周长为40厘米的长方形有无数个,若希望这道题的答案是一个而不是无数个,请学生想办法满足我的要求。(小组讨论)

  从学生设计出的众多问题中选一个讲解,若加条件:长比宽长10厘米。

  此时长y宽x需要同时满足x+y=20和y-x=10,如何在书写上体现“同时”呢?

  x+y=20

  前面加上 , 请学生给 y-x=10 命名。(二元一次方程组)并给出定义

  像这样,把两个二元一次方程合在一起就组成了二元一次方程组。

  设计说明:仍通过原来的实验,自然引出二元一次方程组。

  练习3:下列方程组中是二元一次方程组的有

  (1) (2) (3) (4)

  学生分析前三个,对第(4)个展开讨论

  把两个二元一次方程合在一起是二元一次方程组,但二元一次方程组不一

  定都是这样,如第(4)个方程组中共有两个未知数,未知数的指数都是1,它也是二元一次方程组。(强调是方程组中的未知数共2个)

  练习4:判断下列方程组是否是二元一次方程组:

  x=2 x+y=5

  y=-1 2y-3z=1

  设计意图:因为书上给出的定义是描述性定义,为了避免学生理解上产生偏差,特设计这一组练习,以强调所谓二元即指整个方程组中共含有两个未知数。

  5.2.2二元一次方程组的解

  研究方程组 x+y=20 的解。

  y-x=10

  在分别研究了这两个方程解的基础上,请学生对它们所组成方程组的解各抒己见,最终达成共识:把两个二元一次方程的公共解称为二元一次方程组的解。并发现找公共解麻烦, 下课前告诉学生有快速求解的方法。

  设计意图:激发学生的好奇心和探索欲望。

  5.3学会,引导学生在巩固中更好的理解概念。

  至此长方形问题圆满解决,满足这个条件的长方形只有一个:长15厘米,宽5厘米。在解决这个问题的过程中学了一些新的知识,二元一次方程,二元一次方程的解,二元一次方程组,二元一次方程组的解。

  练习5:方程组 的解是( )

  (强调公共解)

  练习6:写一个解为 的二元一次方程。

  变: 写一个解为 的二元一次方程组。

  练习7:就实验中的长方形问题,每位学生完整的写出设计的题目,并解答。

  设计说明:练习5 巩固二元一次方程组的解的定义;

  练习6 锻炼学生逆向思维的能力;

  练习7 由于在刚刚设计中只采纳了一位学生的设计,现在展示自我的机会,并且通过这个问题巩固全课的知识,前后呼应。

  5.4课后作业:

  必做题:94页 练习、95页1、2。

  选做题:95页 综合运用3、4;

  探索解二元一次方程组的方法。

  六、教学设计

  考虑本节课概念多的特点,所以在每个概念的给出后都设立了一个小练习,以反馈学生的掌握情况,便于及时发现问题解决问题。在设置的练习中除了检查对基本知识的掌握,同时重视学生的思维训练,并通过开放题等培养学生的创新意识。

221381
领取福利

微信扫码领取福利

8.1 二元一次方程组(精选13篇)

微信扫码分享