欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 数学教案-同底数幂的乘法(通用2篇)

数学教案-同底数幂的乘法(通用2篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

数学教案-同底数幂的乘法(通用2篇)

数学教案-同底数幂的乘法 篇1

  同底数幂的乘法(二)

  一、教学目标 

  1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

  2.培养学生运用公式熟练进行计算的能力.

  3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

  4.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:讲授法、练习法.

  2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

  三、重点·难点及解决办法

  (一)重点

  同底数幂的运算性质.

  (二)难点

  同底数幂运算性质的灵活运用.

  (三)解决办法

  在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

  2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

  3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

  七、教学步骤 

  (-)明确目标

  本节课重点是熟练运用同底数暴的乘法运算公式.

  (二)整体感知

  要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

  (三)教学过程 

  1.创设情境、复习导入  

  (1)叙述同底数幂乘法法则并用字母表示.

  (2)指出下列运算的错误,并说出正确结果.

  ①

  ②

  ③

  强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

  (3)填空:

  ① ,

  ② , ,

  2.探索新知,讲授新课

  例1  计算:

  (1) (2) (3)

  解:(1)原式

  (2)原式

  (3)原式

  例2  计算:

  (1) (2)

  (3) (4)

  解:(1)原式

  (2)原式

  (3)原式

  (4)

  或原式

  提问: 和 相等吗?

  3.巩固熟练

  (1)P93  练习(下)1,2.

  (2)计算:

  ① ②

  ③ ④

  (3)错误辨析:

  计算:① ( 是正整数)

  解:

  说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

  ②

  解:原式

  说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

  (四)总结、扩展

  底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

  八、布置作业 

  P94  A组3~5;P95  B组1~2.

  参考答案

  略.

  九、板书设计 

  投影幂

  例1 例2 练习

  小结:

数学教案-同底数幂的乘法 篇2

  同底数幂的乘法()

  教学目标 

  1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;

  2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.

  教学重点和难点

  幂的运算性质.

  课堂教学过程 设计

  一、运用实例 导入  新课

  引例  一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

  学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

  要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)

  本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

  为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.

  二、复习提问

  1.乘方的意义:求n个相同因数a的积的运算叫乘方,即

  2.指出下列各式的底数与指数:

  (1)34;  (2)a3;  (3)(a+b)2;  (4)(-2)3;  (5)-23.

  其中,(-2)3 与- 23 的含义是否相同?结果是否相等?(-2)4 与- 24 呢

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则

  计算103×102.

  解:103×102=(10×10×10)+(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)

  =105.

  2.引导学生建立幂的运算法则

  将上题中的底数改为a,则有

  a3·a2=(aaa)·(aa)

  =aaaaa=a5,    即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有

  =am+n,                  即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?       (2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用举例 变式练习

  例1  计算:

  (1)107×104;  (2)x2·x5.

  :(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.

  提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

  课堂练习

  计算:

  (1)105·106;           (2)a7·a3;              (3)y3· y2;

  (4)b5· b;                       (5)a6·a6;                           (6)x5·x5.

  例2          计算:

  (1)23×24×25;(2)y· y2· y5.

  :(1)23×24×25=23+4+5=212.(2) y· y2 · y5 =y1+2+5=y8.

  对于第(2)小题,要指出y的指数是1,不能忽略.

  五、小结

  1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

  2.解题时要注意a的指数是1.

  六、作业 

221381
领取福利

微信扫码领取福利

数学教案-同底数幂的乘法(通用2篇)

微信扫码分享