欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 苏教版《比例》单元教材漏洞及补丁(精选15篇)

苏教版《比例》单元教材漏洞及补丁(精选15篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

苏教版《比例》单元教材漏洞及补丁(精选15篇)

苏教版《比例》单元教材漏洞及补丁 篇1

  漏洞一:教材中有语句错误

  教材第31页比例基本性质下面有这样一句话:“你能应用比例的基本性质,判断下面的两个比能否组成比例吗?”这明显是一个病句,应该去掉“否”字或去掉“吗?”加个句号。

  补丁:改这句话为“你能应用比例的基本性质,判断下面的两个比能否组成比例。”或“你能应用比例的基本性质,判断下面的两个比能组成比例吗?”

  漏洞二:解比例概念定义不准确

  教材给解比例的定义是:“求比例中的未知项,叫做解比例。”我以为这与“解方程”的定义相矛盾,解方程是一个过程,解比例也应该是一个过程,解方程的概念是:“求未知数解的过程叫做解方程。”因此,解比例的概念应该是:“求比例中未知项的过程,叫做解比例。”

  补丁:改解比例的概念为“求比例中未知项的过程,叫做解比例。”

  漏洞三:对比例尺的意思描述不到位

  在教材第35页有比例尺1:1000,教材上说它的意思是图上1厘米的线段,表示实际1000厘米的距离。其实,它的意思是图上1厘米的长度,表示实际1000厘米的长度,不一定强调是线段才表示实际长度是图上长度的1000倍,或图上长度是实际长度的。要是图上为弯曲的线是不是就不可以测算出实际长度呢?答案是否定的。

  补丁:“1:1000的意思是图上1厘米的长度,表示实际1000厘米的长度。”这样就会更精确些。

  漏洞四:正、反比例的意义用词不精炼

  数学语言要求精炼、易懂。而这部分内容学生看书自学不易懂,甚至老师讲了也有一部分学生不懂,不知道题目要让自己干什么,格式怎么写,学生感到不知所措,除了内容多、语句多、例题多外,跟正、反比例的意义用词不精炼有很大关系,为什么不能简化一下呢?我以为有的词语完全可以去掉。例如:教材中正比例意义是这样:“两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。”这个概念中第四句话“比值”前用了四个定语是:“这两种量中”“相对应的”“两个数的”“比的”。有的定语根本不需要,有的前面有了,用了就重复,应该去掉正比例意义中“这两种量中”和“比的”这两个定语,去掉反比例意义中“这两种量中”这个定语。若不能去掉,反比例的意义中第四句话也应该有这么多定语啊,这句话应该说成:“如果这两种量中相对应的两个数的相乘的积一定”,可见,教材中没有这样说,说明正比例意义的概念可以简化,且不影响概念的准确性。

  补丁:正比例意义改为:“两种相关联的量,一种量变化,另一种量也随着变化,如果相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。” 反比例意义改为:“两种相关联的量,一种量变化,另一种量也随着变化,如果相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。”

  漏洞五:练习题中多处少必要的“省略号”

  教材中有多处表格式练习题让学生判断两种相关联的量是否成正比例或反比例,都少了必要的省略号,这是不科学的,影响了老师和学生的思维。如教材的第41、44、46、47、49页都出现了同样的问题,这会给学生一个误导。

  补丁:在相应的题目里补上省略号。

  以上几点拙见,不知老师们是否有同感,敬请批评指正。

苏教版《比例》单元教材漏洞及补丁 篇2

  教学目标

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学过程

  一、复习准备.

  (一)教师提问复习.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶164.5∶2.710∶6

  教师提问:上面哪些比的比值相等?

  (三)教师小结

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

  用等号连接.

  教师板书:4.5∶2.7=10∶6

  二、新授教学.

  (一)比例的意义(课件演示:比例的意义)

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1.教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  80∶2=200∶5或.

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4.练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15(2)20∶5和1∶4

  (3)和(4)0.6∶0.2和

  5.填空

  (1)如果两个比的比值相等,那么这两个比就比例.

  (2)一个比例,等号左边的比和等号右边的比一定是的.

  (二)比例的基本性质(课件演示:比例的基本性质)

  1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2.练习:指出下面比例的外项和内项.

  4.5∶2.7=10∶66∶10=9∶15

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4.学生自己任选两三个比例,计算出它的外项积和内项积.

  5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  板书课题:加上“和基本性质”,使课题完整.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7.练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  6∶3和8∶50.2∶2.5和4∶50

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.

  在6∶5=30∶25这个比例中,外项是和,内项是和.

  根据比例的基本性质可以写成×=×.

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  1.6∶9和9∶122.1.4∶2和7∶10

  3.0.5∶0.2和4.和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业.

  根据3×4=2×6写出比例.

  六、板书设计.

  省略

苏教版《比例》单元教材漏洞及补丁 篇3

  教学内容:

  1、本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。

  2、学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。

  教材分析:

  对比新旧教材,我们不难发现新教材在保留原来表格的基础上取而代之的是两种量的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的组织、引导学生在没有3个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。

  设计理念:

  教材的改动是为了让学生自己去发现寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,带着问题动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面

  1、努力为学生创设充足的观察,分析、思考,探索、交流与合作的时间和空间,使学生真正理解和掌握成正比的量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的主体,教师是数学学习的组织者与引导者。

  2、努力实现扶与放的和谐统一,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。

  教学目标:

  基于对教材的理解和分析,我将该节课的教学目标定位为

  1、帮助学生理解正比例的意义。用字母 表示变量之间的关系,加深对正比例的认识。

  2、通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。

  3、学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。

  重点难点:

  理解正比例的意义。

  重难点处理

  学生能在具体的情景中理解和体会成正比例的量的规律,但要他们用很专业的数学语言来描述,还是比较困难的,对于六年级的学生来说,语言的表达能力,组织能力,归纳能力有限,考虑问题也有局限性。不管是哪个层次的学生都或多或少存在着,当他们将各自的想法整合起来,基本能得出较为完整的结论。比如,什么叫两种相关联的量,学生也很难得出,也没有探究的价值,所以由教师直接讲授,而对于他们之间的规律,则由学生自己来随意表述,当他们将各自的想法整合起来,通过共同归纳、概括,合作交流,得出较为完整的结论时,能让学生深深体会到自己的价值和合作学习的'高效。

  教学过程:

  说教学策略和方法,引入新课。

  首先提供情景素材,接下来教师引导,培养学生自己发现问题的能力,学生自主探究成正比例的量这个环节分为了四层:观察―讨论―再观察―再讨论,一环扣一环教学,分小组合作交流让学生充分参与,学生在反复观察、思考,讨论、交流的过程自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  本环节将书中的表格分两层呈现,首先出示表格,让学生观察,研究变量,感受是一种量变化,另一种量也随着变化,这量种量是两种相关联的量。接着引导学生研究定量,出示表格1、表格2,让学生计算正方形的周长、面积,让学生体会周长和边长的比值相等、面积与边长的比值不相等。感受变量、常量,此时可能部分同学还是模糊的,所以进一步让学生自己讨论:周长和边长这两种变化的量具有什么特征?面积和边长两种变化的量又具有什么特征?学生讨论汇报后,可引导学生归纳:正方形的周长、面积都随着边长的变化而变化,它们是两种相关联的量;边长增加、周长(面积)也增加,周长(面积)降低、边长减少,但周长和边长的比值总是一定的,而面积与边长的比值不是相等。所以,周长与边长能成正比例,面积与边长不成正比例, “周长、边长”之间的这种关系,从而自主归纳出成正比例的量的特征,在此基础上让学生自学:这里的周长和边长是成正比例的量,周长和边长成正比例关系。仅有例题的首次感知还不能形成正比例的概念,增加一个与例题不同的情景素材,为学生进一步积累感性认识。如果说例1是在老师的引导下完成,补充做一做就应该放手,让学生独立经历正比例关系的判断过程,再次感知正比例关系。学生能够列举出生活中成正比例的量的例子是学生是否真正掌握成正比例的量的特征的一个重要依据,学生能说出更好(估计优生部分可以,但不能说出这时也不必追问,教师接着引导学生用字母式y/x=k(一定),加深对正比例的认识。

  最后,通过练习让学生来巩固今天的新知,由于很多的练习都渗透到了新授的教学过程中,因此,练习的设置较少,重点是让学生在正反例的对比中,加深学生对概念的理解。

苏教版《比例》单元教材漏洞及补丁 篇4

  教学过程:

  知识整理

  1回顾本单元的学习内容,形成支识网络。

  2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。

  甲乙两数的比是5:3。乙数是60,甲数是( )。

  2、解比例

  5/x=10/3 40/24=5/x

  3 、完成26页2、3题

  综合练习

  1、 A×1/6=B×1/5 A:B=( ):( )

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例( ):( )、( ):( )

  实践与应用

  1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

  板书设计: 整理和复习

  比例的意义

  比例 比例的性质

  解比例

  正反比例 正方比例的意义

  正反比例的判断方法

  比例应用题 正比例应用题

  反比例应用体题

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、 培养学生的思维能力。

苏教版《比例》单元教材漏洞及补丁 篇5

  【学习目标】

  1、让学生在实践活动中体验生活中需要比例尺。

  2、通过观察、操作与交流,体会比例尺的实际意义,了解比例尺的含义。

  3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  【教学重点】

  正确理解比例尺的含义。

  【教学难点】

  运用比例尺的有关知识,通过观察、操作与交流,体会比例尺的实际意义,解决生活中的一些实际问题

  【教学过程】

  一、画图产生疑问、引入新知

  1、画图

  师:同学们,今天我们在上新课前先来画一画图,请同学们翻开课堂练习本,拿出尺子。

  请在本子上画出一条长5厘米的线段。

  请在本子上画出一条长12厘米的线段。

  请大家在本纸上画一条长1米的线段。(生面有难色)

  师:怎么不画了?有什么疑问吗?(本子没有1米长)那该怎么办呢?

  (把1米长的线段缩短后,画在本子上)(生画)

  2、引入新知

  师:说一说,你是怎么画的?(生:10厘米、5厘米、或1厘米长的表示(板书)

  师:看来同学们的表示方法各不相同,像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。

  师:但是如果把黑板上的数据1米擦去,只把本子上的2厘米、5厘米线段图给别人看,别人能知道你表示的实际距离是1米吗??那么今天,我就向大家介绍一位新朋友,它就是《比例尺》!(板书)

  二、自主探究,理解比例尺的意义

  1、理解比例尺意义

  师:大家请看笑笑同学就根据比例尺的知识画出了他家的平面图,你看他图中的比例尺是?你知道1:100是什么意思吗?同学们思考一下,把你的想法跟同桌说一说(生思考交流)

  生汇报:1表示图上距离、100表示实际距离

  图上的1厘米的线段,表示实际的100厘米,

  实际距离是图上距离的100倍。

  师:对,图上的1厘米,表示实际的100厘米,因此比例尺实际上就等于图上距离与实际距离的比(板书:比例尺=图上距离/实际距离)生读一读

  2、生活中的比例尺

  师:生活中,你在哪些地方有见过比例尺?)黄老师也收集了一些,请同学们看一看(出示各图,分别让学生读出图中的比例尺并说出它们表示的意义)

  3、自己写一个比例尺

  师:现在你们自己在本子上写一个比例尺,并向同桌说一说它表示的意思

  生汇报

  4、总结比例尺的特点

  师:我们现在初步的认识了比例尺,你有没有发现比例尺有什么样的特点?(生说)总结:是一个比;图上距离和实际距离的单位是统一的;比例尺的前项一般为1

  三、运用知识,尝试解决问题。

  1、解决第2小题

  师:同学们,笑笑按比例尺1:100画出了她家的平面图,他想带我们看看他的卧室,请大家把书翻到30页,先请大家量出他卧室长宽的图上距离是多少吧?(课件)

  (1)量出笑笑卧室的长和宽

  师:你们量出了笑笑卧室长是?宽是?那你们算出笑笑卧室实际的长和宽吗和面积吗?(课件出示)试一试,并把你的解题思路写在练习本上。

  (2)算出笑笑算一算笑笑卧室实际的长是米,宽是米,面积是平方米。

  a:学生独立完成。(师巡视)

  b:学生汇报计算方法。(展示仪展示)

  小结回顾

  想一想,我们刚才在求笑笑卧室面积的过程中都经历了哪些程序?(先量出图上距离,在求出实际距离,然后才能算出面积)

  2、解决笑笑家的总面积是多少平方米?

  先让学生讨论一下,再汇报方法,然后再计算

  学生汇报计算方法。(展示仪展示)

  3、解决第4题

  师:笑笑在设计图时还遇到了难题,我们一起来帮帮她吧!

  (课件出示在父母卧室的南墙正中有一扇宽为2米的窗户,在平面图上标出来。)

  (1)分析题意,让学生说一说(这道题什么意思呢?谁来说一说)

  (1)学生交流想法。

  (2)学生独立完成。

  生1:2米=200厘米200/100=2厘米

  生2:200÷100=0。02米0。02米=2厘米

  师:同学们的表现都非常的出色,笑笑还为我们出了道难题,大家敢于应战吗?

  4、解决第5题

  (课件出示:笑笑的卧室长4米,画在图纸上,她用8厘米表示自己卧室的长。)

  1、图上1厘米表示的实际距离是多少厘米?

  2、她画的平面图的比例尺是多少?

  生:小组合作、讨论、探究、反馈汇报。

  四:全课总结

  师:通过前面的学习,你能谈谈自己的收获

苏教版《比例》单元教材漏洞及补丁 篇6

  设计说明

  本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面:

  1.合理复习,有效铺垫。

  温故而知新,用比例知识解决正、反比例问题的关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难点,为学生探究用比例知识解决问题提供了有力的保障。

  2.巧妙引导,拓展思维。

  《数学课程标准》指出:教师是学生学习的引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于学生创新思维能力的培养,确保数学活动的有效性。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙复习铺垫,引入新课

  1.复习铺垫。

  课件出示:(1)一辆汽车行驶的速度不变,行驶的时间和路程。

  (2)一辆汽车从甲地开往乙地,行驶的速度和时间。

  提出问题:①每道题中各有哪三种量?②其中哪种量是不变的?③哪两种量是相关联的?相关联的量成什么比例?(生讨论后解答)

  2.引入新课。

  生产、生活中的一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)

  ⊙合作交流,探究新知

  1.学习例5,用正比例知识解决问题。

  (1)课件出示教材61页例5主题图。

  (2)学生读题思考,并汇报题中的已知条件和所求问题。

  预设

  生1:已知条件是张大妈家上个月用了8 t水,水费是28元。李奶奶家用了10 t水。

  生2:所求问题是李奶奶家上个月的水费是多少钱。

  (3)指名完整叙述题意。

  根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?

  (4)讨论、交流。

  师:例5的问题可以用什么方法解决?

  预设

  生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。

  生2:可以用比例方法解决。设李奶奶家上个月的'水费是x元,用正比例知识解答。

  师:为什么可以用正比例知识解答?

  预设

  生:因为用水的吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。

  师:如何运用正比例关系列方程解答?

  预设

  生:解:设李奶奶家上个月的水费是x元。

  =

  8x=28×10

  x=

  x=35

  答:李奶奶家上个月的水费是35元。

  (5)拓展练习。

  王大爷家上个月的水费是42元,上个月用了多少吨水?

  (学生独立完成后汇报交流)

苏教版《比例》单元教材漏洞及补丁 篇7

  教学时间:

  3月19日

  教学内容:

  P4749

  教学目标:

  1、使学生理解比的意义,了解比的各部分名称;

  2、使学生理解比值的概念,能正确求比值。

  教学过程:

  一、复习准备:

  1、列式计算。

  ⑴、甲数是50,乙数是35,甲数比乙数多几?乙数比甲数少几?

  ⑵、计算机小组有男生5人,女生有4人,男生人数是女生的几倍?女生人数是男生的

  几分之几?

  ⑶、一辆汽车3小时行驶180千米,这辆汽车每小时行驶多少千米?

  2、引入。

  在日常生活中,经常需要进行数量间的比较,这种比较有时采用减法计算,如(1),有时采用除法计算,如(2)、(3)。采用除法进行两数比较时,我们还用“比”来表示两数间的关系。(揭题)

  二、教学新课:

  1、比的意义。

  刚才说用除法计算两数量间的关系,还可以用“比”来表示,那么什么叫做比呢?怎样用比来表两数量之间的关系呢?现在我们就来学习讲座这个问题:

  ⑴、看书自学:课本第4849页,思考:什么叫做“比”?

  ⑵、自学反馈:

  ①、男生人数是女生的几倍,也可以说成是谁和谁比,是几比几?

  ②、女生人数是男生的几分之几,也可以说成是谁和谁比,是几比几?

  ③、汽车每小时的速度,也可以说成是谁和谁比,是几比几?

  ⑶、归纳意义;

  通过上面的例子,你发现了什么?(比的意义)

  ⑷、巩固练习:

  ①、某四间有男工32人。女工18人;

  男工人数是女工人数的几倍?怎么算?也可以怎么说?

  女工人数是男工人数的几分之几?怎么算?也可以怎么说?

  女工人数是车间总人数的几分之几?怎么算?也可以怎么说?

  ②、练一练第1题

  2、比的各部分名称是怎样规定的?比的读法、写法又是怎样的?请继续自学。

  5:4读作5比4

  前项比号后项

  问:什么叫比值?怎样求比值。

  15:=1比值4

  3、试一试

  根据题意写出比,并求出比值。

  ⑴、李强植树6棵,张明植树5棵;

  A.写出李强和张明植树棵数的比,比值是多少?

  B.写出张明和李强植树棵数的比,比值是多少?

  ⑵、3支圆珠笔的总价是6元,写出圆珠笔总价和支数的比,比值是多少?这里的比值

  表示什么?

  反馈小结:

  1前两个比的结果所表示的都是倍数关系:李强植树棵数是张明的1倍,张明植55树棵数是李强的;而一个比的结果是一个新的量,即圆珠笔的单价,想一想,你也6

  能举出这样的例子来吗?

  三、练习

  读出下面各个比,并求出比值:

  12120:71:11.6:1.855

  四、小结:

  今天你学会了什么?

  比和比值有什么区别?

  一、作业:

  P493~5

  教学反思:

  “比”的这部分知识虽说是学生第一次遇到,但对其认识对六年级的学生来说并不是很困难,所以我在教学时放手让学生自学,老师只是从中提出几个问题,作为反馈调查,或起到加深理解的“画龙点睛”之笔。从学生的学习情况来看,大部分学生能够自己学明白这部分内容,但个别学生没有弄懂。

  上课之前我对这几个学习能力较弱的学生是有所关注的,把最容易回答的问题留给他们,甚至让他们在课堂上“拾人牙慧”,但还是有两名学生连别人刚说

  过的话也复述不出,对她们的学习得采用低难度、多重复的方法。

苏教版《比例》单元教材漏洞及补丁 篇8

  教学目标

  1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

  2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。

  3. 使学生会画出反比例函数的图象。

  4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

  教学重点

  1、 使学生了解反比例函数的表达式,会画反比例函数图象

  2、 使学生掌握反比例函数的图象性质

  3、 利用反比例函数解题

  教学难点

  1、 列函数表达式

  2、 反比例函数图象解题

  教学过程

  教师活动

  一、作业检查与讲评

  二、复习导入

  1.什么是正比例函数?

  我们知道当

  (1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

  (2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)

  创设问题情境

  问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

  分析 和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.

  设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以

  从这个关系式中发现:

  1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.

  2.自变量v的取值是v>0.

  问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.

  分析 根据矩形面积可知

  xy=24,即

  从这个关系中发现:

  1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;

  2.自变量的取值是x>0.

  三、新课讲解

  上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).

  说明 1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系.

  2.反比例函数的解析式又可以写成:( k是常数,k≠0).

  3.要求出反比例函数的解析式,只要求出k即可.

  实践应用

  例1 下列函数关系中,哪些是反比例函数?

  (1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

  (2)压强p一定时,压力F与受力面积s的关系;

  (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

  (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

  例2 当m为何值时,函数是反比例函数,并求出其函数解析式.

  例3 将下列各题中y与x的函数关系与出来.

  (1),z与x成正比例;

  (2)y与z成反比例,z与3x成反比例;

  (3)y与2z成反比例,z与成正比例;

  例4 已知y与x2成反比例,并且当x=3时,y=2.求x=1.5时y的值.

  分析 因为y与 x2成反比例,所以设,再用待定系数法就可以求出k,进而再求出y的值.

  例5 已知y=y1+y2, y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

  小结

  一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).

  要求反比例函数的解析式,可通过待定系数法求出k值,即可确定.

  练习2

  1.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数?

  (1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;

  (2)体积为100cm3的长方体,高为hcm时,底面积为Scm2;

  (3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2;

  (4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米.

  2.已知y与x-2成反比例,当x=4时,y=3,求当x=5时,y的值.

  3.已知y=y1+y2, y1与成正比例,y2与x2成反比例.当x=1时,y=-12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值.

  4.已知一个长方体的体积是100立方厘米,它的长是ycm,宽是5cm,高是xcm.

  (1)写出用高表示长的函数式;

  (2)写出自变量x的取值范围;

  (3)当x=3cm时,求y的值.

  5.试用描点作图法画出问题1中函数的图象.

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质.

  二、探究归纳

  1.画出函数的图象.

  解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.

  3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

  上述图象,通常称为双曲线(hyperbola).

  提问 这两条曲线会与x轴、y轴相交吗?为什么?

  画出反比例函数的图象

  1.这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2.反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

  注 1.双曲线的两个分支与x轴和y轴没有交点;

  2.双曲线的两个分支关于原点成中心对称.

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

  三、实践应用

  例1 若反比例函数的图象在第二、四象限,求m的值.

  分析 由反比例函数的定义可知: ,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值.

  解 由题意,得 解得.

  例2 已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.

  例3 已知反比例函数的图象过点(1,-2).

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  例4 已知函数为反比例函数.

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当-3≤x≤时,求此函数的最大值和最小值.

  例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象.

  说明 由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

  小结

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

  1.反比例函数的图象是双曲线(hyperbola).

  2.反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

  五、课堂练习

  1.在同一直角坐标系中画出下列函数的图象:

  2.已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.

  4.已知反比例函数经过点A(2,-m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0< x2,试比较y1和 y2的大小

  四、课后作业布置

  课后练习卷一份

  六、课后教学反思

苏教版《比例》单元教材漏洞及补丁 篇9

  教学内容:

  教材第84页例4,练习十七第2、4----7题。

  教学目标 :

  1、理解正、反比例的意义。能正确判断两种量是否成正比例或反比例。能熟练地运用比例来解决有关问题。

  2、经历交流、讨论、练习等学习过程,使学生进一步认识事物之间的联系和发展变化的规律,提高学生运用比例来解决有关问题的能力

  3、培养学生用发展变化的观点来分析问题的能力,渗透函数思想。

  教学重点:

  掌握正、反比例的意义。

  教学难点:

  正确判断两种量成什么比例。

  教具准备:

  多媒体课件。

  教学过程:

  一、明确学习任务

  出示课题

  二、正、反比例的意义

  1、例4:你是怎样判断两种量成正比例还是成反比例的?

  正比例

  ①两种相关联的量;

  ②其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;

  ③两种量的比值一定。

  反比例

  ①两种相关联的量;

  ②其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;

  ③两种量的积一定。

  2、你能用字母表示正、反比例的关系吗? =k(一定) 成正比例

  y =k(一定) 成反比例

  三、判断两种量是否成正比例或反比例。成什么比例?

  ①速度一定,路程和时间。

  ②正方形的边长和它的面积。

  ③订《少年报》数量和所需钱数。

  ④小明从家到学校,行走的速度和时间。

  ⑤圆的周长和半径。

  ⑥圆的面积和半径。

  四、用比例解决问题。

  1、说一说用比例解决问题的步骤。

  2、举例:修一条公路,全长12km,开工3天修了1.5km。照这样计算,修 完这条公路一共需要多少天?

  A.两种相关联的量是什么?

  B.两种量成什么比例?说明理由,写出等量关系式

  C.设未知数X,列出比例式

  D.解比例并检验

  五、知识应用

  独立完成练习十七第2、4----7题。

  六、课堂总结

  回顾本节课的学习,说一说你有哪些收获?

  板书设计:

  比和比例(二)

  A.认真审题,找出两种相关联的量;

  B.判断两种量成时难免比例;用比例解决问题的过程、步骤

  C.设未知数X;

  D.列出比例式(含有未知数);

  E.解比例、检验。

  教学反思:

  在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段正、反比例的意义及用比例知识解决问题的有关知识并进行系统整理,配合相关的练习题,让学生进行训练,加深学生的理解提高学生运用比例来解决有关问题的能力。

苏教版《比例》单元教材漏洞及补丁 篇10

  本单元教学“数与代数”领域的比例知识,还教学“空间与图形”领域的图形放大或缩小,以及比例尺的知识,把不同领域的教学内容有机融合是教材的一大特点。图形的放大或缩小是认识比例的现实素材,比例能揭示图形放大或缩小的数学含义,而且解决图形放大或缩小、比例尺的实际问题要应用比例的知识。把两个领域的内容融合能发挥数形结合的作用,提高教学效率。

  全单元编排七道例题和三个练习,把全部内容分成三段教学。例1 ~ 例 3以及练习九,主要教学图形放大、缩小的含义,比例的意义。例4、例5以及练习十,主要教学比例的基本性质、解比例,解决图形放大或缩小的实际问题。例 6、例7以及练习十一,教学比例尺的知识和实际应用。另外,还编排了实践活动《面积的变化》,研究图形放大或缩小时边长与面积的变化关系。

  1.联系实际,建立图形放大、缩小的概念。

  数学里图形放大或缩小的含义与生活中的放大、缩小经常是不同的。生活中会把图形由小变大视作放大,由大变小视为缩小。数学里的图形放大或缩小,它的每条边都按一定的比例变化,即每条边的长度都放大到原来的几倍或缩小到原来的几分之一。例1教学图形放大、缩小的含义,先观察在电脑上放大长方形的现象,分别研究长方形放大后与放大前长、宽的关系。然后联系长方形放大揭示图形放大的数学含义。教材依次讲了三句话:首先是“长方形的每条边放大到原来的2倍”,这是对长放大到原来的2倍,宽也放大到原来2倍的概括。然后是“放大后的长方形与原来长方形对应边长的比是2∶1”,用比描述图形放大时边的长度变化。这里把放大前、后两个长方形的长称为对应边,宽也称为对应边,必须把放大后图形的边的长度作为前项,原来图形的边的长度作为后项。最后是“把原来的长方形按2∶1 的比放大”,让学生体会由于放大后与放大前两个长方形的对应边的长度关系是2∶1,因而把图形的放大说成2∶1。这里还示范了图形放大的规范表述“按 2∶1的比放大”。

  在初步理解图形放大的基础上,教材引导学生主动迁移,认识图形的缩小。让学生说说缩小后的长方形的长、宽分别是原来长方形的几分之几,解释图形按1∶2缩小的含义,初步形成图形缩小的概念。

  例 2在方格纸上画图形。“利用方格纸等形式按一定比例将简单图形放大或缩小”是《标准》的要求,因为方格能直观显示每条边的变化情况,操作方便,有利于概念的应用和巩固。教材引导学生在画图前先思考放大(或缩小)后图形的长、宽各是几格,应用概念进行推理,为正确画图做准备。在画图以后,还要观察原来的图形、放大后的图形、缩小后的图形,再次体会图形放大、缩小时,每条边的长度都按相同的比变化。练习九第1题能使学生进一步清晰图形放大、缩小的概念。方格纸上的⑤号图形是①号长方形放大后的图形,因为⑤号图形的长、宽分别是①号图形长、宽的3/2;③号图形是①号长方形缩小后的图形,因为③号图形的长、宽分别是①号长方形长、宽的1/2。而②号、④号图形与①号长方形比,各条边没有按相同的比变化,它们都不是①号长方形缩小或放大后的图形。

  根据图形的放大或缩小,可以写出许多关于线段长度的比。在例3的情境中,长方形照片放大后与放大前的长的比是9.6∶6.4,宽的比是6∶4;放大前长方形长与宽的比是6.4∶4,放大后长方形长与宽的比是9.6∶6。前面两个比在例1和例2里已经多次接触,例3引导学生写出后面两个比,利用这两个比教学比例的意义。先分别计算6.4∶4和9.6∶6的比值,从比值都是1.6得出这两个比相等,可以写成6.4∶4=9.6∶6或6.4/4=9.6/6,指出表示两个比相等的式子叫做比例,突出比例是比值相等的两个比组成的等式。然后让学生思考放大后与放大前两张照片长的比和宽的比也能组成比例吗,经历写出比、算比值、发现比值相等、组成比例的过程,体会比例的意义。“练一练”的四组比中,如果同组的两个比的比值相等,就可以组成比例;如果比值不相等,两个比就不能组成比例,进一步巩固比例的概念。

  长方形放大后与放大前的长的比和宽的比相等,是例1教学的图形放大的含义。在例3中,又发现长方形放大前长与宽的比和放大后长与宽的比相等,从新的视角体会了图形放大的含义。例3既从放大前长与宽的比和放大后长与宽的比组成比例,又从放大后与放大前长的比和宽的比组成比例,引导学生利用比例的意义进一步完善图形放大的概念。

  除了图形放大与缩小,从常见的数量关系中也能找到比例。练习九第3题,一辆汽车上午行驶的路程和时间的比与下午行驶的路程和时间的比能组成比例。第7题购买同一种铅笔,总价与数量的比能组成比例;大小不同的正方形,周长与边长的比能组成比例。这些素材能加强对比例的理解,还为以后教学正比例作了铺垫。

  2.联系实际,发现和应用比例的基本性质。

  例4教学比例的基本性质,大致分五步进行:

  第一步在按比例缩小三角形的情境中写出一些比例,为研究比例的基本性质准备充分的素材;第二步教学比例的内项和外项,这是认识比例基本性质必须具备的概念;第三步观察已经写出的几个比例,初步发现比例的两个外项的积等于两个内项的积;第四步重新写出一些比例,看看是否具有同样的规律,并在字母表示的比例上概括这样的规律;第五步指出发现的规律是比例的基本性质,并在写成分数形式的比例上体会这一性质。

  把三角形按比例缩小,联系图形缩小的含义,学生可能想到缩小后与缩小前两个三角形底的比和高的比相等,或者高的比和底的比相等,还可能想到缩小前、后每个三角形底与高的比相等,或者高与底的比相等。于是,在交流时出现四个不同的比例。教材指出3∶6=2∶4里的3和4是比例的外项,6和2是比例的内项,让学生说说其他三个比例的内项和外项各是几。学生容易发现,如果6和2同时做比例的外项,那么3和4是比例的内项;如果6和2同时做比例的内项,那么3和4是比例的外项,从而体会这几个比例两个外项的积等于两个内项的积。再写出一些比例,看看是否有同样的规律,检验前面四个比例的规律是不是适用于所有的比例。通过更丰富的实例,进一步体会两个外项的积等于两个内项的积是所有比例的共同规律。在此基础上,把比例用字母表示成a∶b=c∶d,写出a×d=b×c,概括了上面的规律,通过符号化的方式表示了比例的基本性质。

  “试一试”应用比例的基本性质,判断3.6∶1.8和0.5∶0.25能否组成比例。思考线索应该是:

  如果这两个比能够组成比例,那么3.6×0.25的积与1.8×0.5的积应该相等;如果这两个比不能组成比例,那么3.6×0.25的积与1.8×0.5 的积不相等。于是分别计算3.6×0.25和1.8×0.5,并比较两个积的大小。“练一练”是“试一试”的延伸,由于6×12=4×18,所以6、4、 18和12这四个数能组成比例。而4、5、6和8这四个数不能组织积相等的两个乘式,因而它们不能组成比例。把6、4、18和12组成比例,可以把6和 12同时作外项,4和18同时作内项,也可以把6和12同时作内项,4和18同时作外项,一共能写出8个不同的比例。对于每个学生来说,只要求写出一个比例,并在交流时知道还能写出其他比例,不要求每个学生都写出8个比例。

  例 5应用比例的知识解决图形放大的实际问题,包括根据图形放大的含义列出比例,以及利用比例的基本性质解比例两个内容。先根据“照片放大后与放大前长的比和宽的比能组成比例”这个知识写比例,发现要写的比例里有三个项是已知数,另一个项是未知数,于是想到把放大后照片的宽设为x厘米,列出比例解决问题。这个比例也是一个方程,教材写出了解方程的第一步6x=13.5×4,让学生思考这一步计算的依据是什么,体会这里应用了比例的基本性质,最后还指出求比例中的未知项叫做解比例。

  “ 试一试”解写成分数形式的比例,进一步熟悉比例的内项和外项。已经写出“1.2x=”引导学生应用比例的基本性质,体会这是解比例的关键步骤。“练一练” 解分别由整数、分数或小数组成的三个比例,要应用整数、分数或小数的乘、除计算。教材里没有出现分数与小数共同组成的比例,是因为《标准》不要求进行分数与小数的乘、除计算。

  3.以图形的放大、缩小为基础,教学比例尺。

  平面图是把现实的平面按一定比例缩小绘制成的,从平面图想像实际平面的数学活动是把图形放大,比例尺刻画了平面图和实际平面之间的放大、缩小关系。

  例 6教学比例尺的意义,首先要让学生在实际情境中识别实际距离和图上距离,这些是与比例尺有关的概念。其次分别写出草坪长的图上距离和实际距离的比,宽的图上距离和实际距离的比。在写比的时候,要指导学生统一图上距离与实际距离的单位,便于写比和化简比。通过交流,体会把实际距离改写成以厘米为单位的数量,写出的是整数比,把图上距离改写成以米为单位的数量,写出的是小数比,前者比后者更方便一些。例题的教学重点是建立比例尺的概念,先指出图上距离和实际距离的比叫做平面图的比例尺,由于学生已经两次写出这样的比,所以建立比例尺的概念是感性认识的抽象提升;再用数量关系式进一步表达比例尺的意义和计算方法,教材里同时出现“图上距离∶实际距离=比例尺”和“图上距离/实际距离=比例尺”。

  比例尺1∶1000表示图上距离是实际距离的1/1000,实际距离是图上距离的1000倍,这是对比例尺1∶1000的意义作出的具体解释。教材让学生说出这些关系,进一步体会比例尺的意义。从图上距离与实际距离间的倍数关系,还能得到图上距离1厘米表示实际距离10米,这就引出了比例尺的另一种表示形式 ――线段比例尺。数值比例尺和线段比例尺都是比例尺的表示形式,它们可以相互转化。例题从数值比例尺引出线段比例尺,“练一练”第1题分别解释数值比例尺与线段比例尺的具体含义,两种形式的比例尺之间的关系就能得到沟通。第2题求平面图的比例尺,学生在例题里进行过写出图上距离与实际距离的比并化简的活动,应该有能力独立完成这道题。

  例 7已知平面图的比例尺以及明华小学到少年宫的图上距离,求两地之间的实际距离。由于学生对比例尺1∶8000的意义会有不同的解释,因而可能出现不同的解题思路和方法。有的学生会从图上距离与实际距离的倍数关系进行思考,有的学生会把数值比例尺转换成线段比例尺,列式和计算比较方便。例题还引导学生用解比例的方法解题,表示比例尺意义的数量关系式是列比例依据的相等关系。“试一试”里根据已知的比例尺和实际距离,求图上距离。虽然已知条件和要求的问题与例题不同,但解题思路是一致的,对比例尺的意义作出具体解释是思考的关键,教材允许学生按自己的思路选择解法。要注意的是,“试一试”要求在例7的平面图上表示出医院的位置,算出学校到医院的图上距离后解题并没有结束,还要在学校正北方3厘米处作个记号表示医院,并在学校与医院之间连条线段。

  4.进一步研究图形放大,发现面积与长度变化的关系。

  《面积的变化》分三段设计实践活动。第一段的活动有:分别测量放大前、后两个长方形的长和宽,根据图形放大的含义写出对应边长的比;估计两个长方形面积的比;利用测量得到的边的长度计算两个长方形的面积比。这一段活动的目的是进一步巩固图形放大的概念,体会图形放大,面积扩大的倍数与边长扩大的倍数是不相同的。第二段的活动有:依次测量正方形、三角形、圆放大前、后的有关长度;分别计算各个图形放大前、后的面积,把长度与面积的数据填入教材的表格里;研究图形放大后与放大前的边长比与面积比之间的关系。这一段活动要通过几个实例的研究,发现图形放大,面积扩大的倍数是长度扩大倍数的平方。第三段在东港小学的校园平面图里选择一幢建筑或一处设施,测量图上的长度,算出实际占地面积,应用前面发现的规律。因为这幅平面图的比例尺是1∶1000,实际距离是图上距离的1000倍,所以实际面积是图上面积的倍数就是1000的平方,计算必须细心,防止错误。当然,也可以利用图上距离与比例尺,先算出实际距离,再计算实际面积。不过,这种方法没有应用发现的规律,要尽量引导学生采用前一种方法,体验发现规律的乐趣和应用规律的意义。

苏教版《比例》单元教材漏洞及补丁 篇11

  数学教案设计是数学课堂教学活动的一个重要组成部分,下面要为大家分享的就是比和比例教案,希望你会喜欢!

  教学目标:

  培养学生的观察能力、判断能力。

  学法引导:

  引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。

  教学重点:

  比例的意义和基本性质。

  教学难点:

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学过程:

  一、回顾旧知,复习铺垫

  同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。大家有没有信心?

  1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

  教师把学生举的例子板书出来

  2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。

  2:3 4.5:2.7 10:6

  80:4 4:6 10:1/2

  提问:你是怎样分类的?

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:6 12:16=3/5:4/5 80:4 =10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)

  二、引导探究,学习新知

  1、教学比例的意义。

  (1)教学例题。

  先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。

  师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。

  提问:根据求出的比值,你发现了什么?(两个比的比值相等)

  教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式

  2.4∶1.6 = 60∶40 像这样由两个相等的比组成的式子我们把它叫做比例。

  师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?

  比例也可以写成分数形式:4.5/2.7= 10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。

  (2)引导概括比例的意义。

  同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)

  (3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?

  “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)

  根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。

  (4)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (5)反馈训练

  用手势判断下面卡片上的两个比能不能组成比例。

  6:3和12:6 35:7和45:9

  20:5和16:8 0.8:0.4和4:2

  2、教学比例的基本性质。

  (1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。

  ( 2 )检查自学情况:指名说出黑板上各比例的内外项。

  (3)探究比例的基本性质。

  师:在比例的内外项之间,存在着一个有趣的特性(比例的基本性质),大家想不想研究?(板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书

  两个外项的积是4.5×6=27

  两个内项的积是2.7×10=27

  “你发现了什么?”(两个外项的积等于两个内项的积。)板书:4.5×6=2.7×10

  (4)计算验证,达成共识。

  师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。

  (5)引导小结比例的基本性质。

  师:通过计算,大家,谁能用一句话把这个规律概括出来?

  教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

  师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6) “这个比例的外项是哪两个数呢?内项呢?”

  学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

  (6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

  反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。

  三、巩固深化,拓展思维。

  (一)判断

  1.两个比可以组成一个比例。 ( )

  2.比和比例都是表示两个数的倍数关系。 ( )

  3.8:2 和1:4能组成比例。 ( )

  (二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。

  (1) 6:9和 9:12 (2)14:2 和 7:1

  (3) 0.5:0 .2和 5:2 (4)0.8:0.4和0.3:0.6

  (三)填空

  (1)一个比例的两个外项互为倒数,则两个内项的积是( ),如果其中一个内项是2/3,则另一个内项是,如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是。

  (2)如果2:3=8:12,那么,x=x。

  (3)写出比值是4的两个比是、,组成比例是。

  (4)如果5a=3b,那么,a:b=:( )

  (四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。

  2 、3 、4和6

  拓展题:猜猜括号里可以填几?

  5:2=10:( ) 2:7=( ):0.7 1.2:2.5=( ):25

  四、全课小结,提高认识

  通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  五、布置作业。

  练习六2、3、5

苏教版《比例》单元教材漏洞及补丁 篇12

  学情分析:

  掌握各部分量占总数量的几分之几,能熟练地按已知一个数求它的几分之几是多少,用乘法求各部分量的新方法。

  教学难点:

  能根据实际情况,判断各部分量之间应该按怎样的比例来分配。

  教学重点:

  掌握按比例分配应用题的特征及解题方法.教学难点:按比例分配应用题的实际应用

  教学目标:

  1、使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

  2、培养学生应用所学数学知识解决实际问题的能力;

  3、通过实例使学生感受到数学来源于生活,生活离不开数学。

  教学策略:

  引导学生将比转化成分数、份数,指导学生试算

  教学准备:

  学生课前作调查;

  教学过程:

  一、导入

  1、看题目:“比的应用”,你想知道什么?

  2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的知识。下面,请汇报一下你调查到的信息。

  3、小结:通过调查,我们已经初步感受到比和我们的日常生活有密切的联系。今天,我们就随一位小朋友:小明一起去看看,比在生活中有什么用处?

  二、新课

  1、配置奶茶

  星期天的上午,小明家来了一位客人。刚巧爸爸妈妈有事出去了。于是小明就做起了小主人,亲自招待这位王叔叔。

  师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的基本礼仪。小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。

  (1)奶茶中,奶和茶的比是2:9。看了这句话,你知道了些什么?

  (2)小明想要配制220毫升的奶茶,

  (a)先要解决什么问题?(奶和茶各取多少毫升?)

  (b)请你先独立计算一下,奶和茶各取多少毫升?

  (4)评价

  (a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?

  (b)其实,这些方法都很好。不过,第(b)种解法是我们今天所学到的一种新方法。它是“把一个数量按照一定的比例分配”的问题,我们把它叫做“按比例分配”。(显示课题,齐读)

  2、计算电费

  (1)刚才小明就按大家计算的结果给王叔叔配制了一份奶茶。王叔叔在小明家坐了一会儿,刚巧看到桌子上放着一张电费的清单。原来,“小明家和另外两户居民合用一个总电表。九月份共应付电费60元。”(显示)王叔叔想看小明这个小主人合不合格,就问小明:“你们家上个月交了多少元电费?”

  (a)你觉得小明家应付多少元电费?你是怎么想的?

  (b)你为什么不同意他的想法?(不公平)

  (2)其实小明这个小主人,当得还是挺合格的。他告诉王叔叔,他们三户居民都装了分电表。上个月用电情况是这样的:(显示下表)

  (3)同学们,你们能帮小明算一算吗?

  3、分配奖金

  我们运动队的队员们每天都进行刻苦训练。辛勤的汗水终于换来了丰收的果实。在前不久举行的全市中小学生运动会上,他们夺得了第三名的优异成绩。下面是运动员的参赛项目个数和得分情况:(显示表格)

  学校决定共给这几位同学1200元的奖金。假如让你来分配,你将怎么分配这些奖金呢?

  (5)小结:到底学校会怎么奖励运动员们,我们下午见分晓。不过,不管以怎样的形式奖励运动员,重要的不在于奖金的多少,而在于对他们平时的刻苦训练以及赛场上的奋力拼搏的一种肯定。

  三、课堂小结

  今天这堂课我们学习了“按比例分配”,你有什么收获?

苏教版《比例》单元教材漏洞及补丁 篇13

  整理和复习

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、 培养学生的思维能力。

  教学过程:

  知识整理

  1回顾本单元的学习内容,形成支识网络。

  2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。

  甲乙两数的比是5:3。乙数是60,甲数是( )。

  2、解比例

  5/x=10/3 40/24=5/x

  3 、完成26页2、3题

  综合练习

  1、A×1/6=B×1/5 A:B=( ):( )

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例( ):( )、( ):( )

  实践与应用

  1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

苏教版《比例》单元教材漏洞及补丁 篇14

  教学内容

  正比例的意义。

  教学目的

  使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。

  教学重点

  正比例的意义。

  教学难点

  正比例的判断。

  教具准备

  小黑板、投景影片

  教学过程:

  一、复习

  根据下面各题,先口答列式及得数,后说数量关系式。

  1、一列火车2小时行驶250千米,平均每小时行驶多少千米?

  2、一种布,买3米共要27元,平均每米布多少元?

  3、某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?

  师据学生回答板书如下:

  路程/时间=速度总价/数量=单价工作总量/工作时间=工作效率

  二、引新

  我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)

  三、新授

  1、教学例1。一列火车行驶的时间和所行的路程如下表。

  时间(时)12345678

  路程(千米)90180

  (1)引导学生观察上表内数据。

  (2)边观察边思考下面问题:

  (1)表中有哪几种量?这两促量有没有关系?

  (2)这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)

  (3)引导学生分析这两种相关联的量的变化有什么规律?

  (1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:

  90/1=90360/4=90540/6=90

  (2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)

  (3)师:它们之间的关系可以用式子表示

  路程/时间=速度(一定)

  (4)小结。

  时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

  2、教学例2

  (1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。

  数量(米)1234567

  总价(元)8.216.424.632.841.049.257.4

  (2)引导学生观察上表内的数据。

  (3)回答下面风个问题:

  表中有哪两种量?这两种量有关系吗?为什么?

  这两种量是怎样变化的?

  它们的变化有什么规律?

  相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?

  (4)小结。

  花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。

  3、概括正比例的意义及关系式。

  (1)比较上面的例1和例2,它们有什么共同点?

  (2)判断成正比例量的方法:是什么?

  (3)师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (4)概括关系式:

  Y/X=K(一定)

  4、教学例3。

  出示例3

  师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)

  5、小结。

  判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。

  四、巩固练习

  第13页做一做

  五、总结。

  1、什么叫成正比例的量?

  2、怎样判断两种量是成正比例的量?

  六、作业:完成练习六第1-3题。

苏教版《比例》单元教材漏洞及补丁 篇15

  教学过程:

  一、复习铺垫

  1、下面两种量是不是成正比例?为什么?

  购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

  2、教学P42例3。

  (1)引导学生观察上表内数据,然后回答下面问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、水的高度是否随着底面积的变化而变化?怎样变化的?

  C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

  D、这个积表示什么?写出表示它们之间的数量关系式

  (2)从中你发现了什么?这与复习题相比有什么不同?

  A、学生讨论交流。

  B、引导学生回答:

  (3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

  (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)

  三、巩固练习

  1、想一想:成反比例的量应具备什么条件?

  2、判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  (6)你能举一个反比例的例子吗?

  四、全课小节

  这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

  五、课堂练习

  P45~46练习七第6~11题。

  教学目的:

  1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

  2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

  3、初步渗透函数思想。

  教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

  教学难点:利用反比例的意义,正确判断两个量是否成反比例。

221381
领取福利

微信扫码领取福利

苏教版《比例》单元教材漏洞及补丁(精选15篇)

微信扫码分享