欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 苏教版五下《方程》教学设计(通用14篇)

苏教版五下《方程》教学设计(通用14篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

苏教版五下《方程》教学设计(通用14篇)

苏教版五下《方程》教学设计 篇1

  教学内容

  苏教版《义务教育课程标准实验教科书数学》五年级(下册)第1、2页,练习一第1~3题。

  教学目标

  1.使学生在具体的情境中,理解方程的含义,初步认识等式与方程的关系。

  2.使学生在观察、描述、分类、抽象、概括的过程中,经历将现实问题抽象成式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

  3.使学生在积极参与数学活动的过程中,感受探索的乐趣,获得成功的体验,增强学好数学的信心。

  教学过程

  一、认识相等关系,初步理解等式

  1.出示例1天平图(两边没有砝码)。

  提问:认识天平吗?天平是用来做什么的?

  2.在天平的两边加上砝码。

  提问:你看懂了什么?

  学生可能想到:一边托盘内放了两个重50克砝码,一边放了一个重100克的砝码,两边一样重。

  追问:不看两边托盘内放的东西,你知道两边一样重吗?能用语言描述两边物体的质量关系吗?

  学生回答后,提问:怎样用数学式子表示两边物体的质量关系?(板书:50+50=100)

  追问:为什么用等号连接?

  指出:像这样用等号连接的式子,就是等式,表示相等的关系。

  二、认识方程

  1.出示例2天平图中的指针部分局部图(第一幅图)。

  提问:看到这时的指针位置,你有什么想法?如果用式子来表示,还会选用等号写等式吗?为什么?

  2.出示完整的天平图。

  提问:你能用语言描述两边物体的质量关系吗?怎样用式子表示?(板书:x+50>100)

  追问:x表示什么?

  3.依次出示例2第二、三幅天平图。

  要求:先用语言描述天平两边物体的质量关系,然后用式子表示。

  学生口述,教师板书:x+50=150,x+50<200。

  4.出示:2x=200。

  提问:根据这个式子,想一想天平两边的物体是怎样的?你能描述出来吗?

  在学生描述的基础上,出示教材第1页例2的第四幅天平图。

  5.将式子分类,认识方程。

  引导:我们来看刚才根据天平图所写的几个式子。在黑板上集中呈现5个式子的卡片:

  50+50=100x+50>100x+50=150

  x+50<2002x=200

  谈话:你能把这些式子按照一定的标准进行分类吗?请大家独立思考,再在小组里先说一说。

  学生的分类可能出现下面两种情况:

  ①将式子按照不同的连接方式(大于号、小于号或等号)分成三类。

  引导:按照你的理解,你能找出哪些是等式吗?

  学生口答,教师请学生根据他们的发言在黑板上移动式子卡片,将式子分类。

  指出:根据大家的意见,我们可以把这些式子分成三类,也可以把这些式子分成两类,一类是用等号连接的式子,都是等式;还有一类是用大于号、小于号连接的,都不是等式。

  教师对黑板上的卡片位置作如下调整:

  50+50=100x+50>100

  x+50=150x+50<200

  2x=200

  ②将式子按照是否含有字母x分成两类。

  指出:这里用字母x表示未知数。

  让学生在黑板上把另一套式子卡片分类排列,并指导学生按下面的方式排列:

  50+50=100是否含有未知数

  x+50=150

  x+50>100

  x+50<200

  2x=200

  在学生交流了两种分类方法之后,教师引导学生对照黑板上所分类的式子卡片思考:你能把两种分类方法综合起来对这些式子进行分类吗?

  学生对黑板上的式子进行调整。教师在学生分类的基础上,标注类别序号。

  谈话:同学们通过思考、交流,把这些式子分成了四类。请观察这几类式子,说一说每组式子有什么特征?

  学生描述后,教师指出:正如你们所描述的,像第③类式子这样,含有未知数的等式是方程。

  6.完成“练一练”第1题。

  依次出示前三道式子:6+x=16;36-7=29;60+23>70,学生逐一做出是否是方程的判断,并说明理由。(在学生对“60+23>70”做出判断后,教师将这道式子板书在算式卡片的第②类中)

  出示第1题的其他式子,学生判断哪些是方程。接着,让学生判断哪些是等式。结合学生的判断,教师指出:方程中的未知数,既可以用x表示,也可以用y表示,还可以用其他字母表示。

  反思:根据刚才的练习,你发现等式与方程有什么关系?学生在小组里交流。

  在学生交流的基础上,用课件结合“练一练”第1题进行动态演示:先是将所有的等式画上集合圈,再闪烁显示其中的方程式,将方程式画上集合圈,集合圈中的等式渐渐淡化直至消失,出现文字“等式”与“方程”,如右图:

  教师引导学生再结合黑板上对式子进行的分类,理解:方程是一类特殊的等式;等式中,一部分是方程。

  7.完成“练一练”第2题。

  学生写一些方程,再在小组里交流。

  三、进一步理解方程的含义,体会方程思想

  1.教学“试一试”。

  出示“试一试”(图略)。

  学生先用语言表述图中告诉了我们什么,数量之间有怎样的相等关系,再列方程。

  2.完成“练一练”第3题。

  学生先用语言描述图中的等量关系,再列方程。

  四、课堂总结(略)

  五、课堂作业

  练习一第1~3题。

苏教版五下《方程》教学设计 篇2

  一、单元教材基本分析

  (一)本单元教学哪些知识?教材的编排有什么特点?

  方程是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的。本单元的教学内容有:

  1.方程的特征,初步建立方程的概念;

  2.等式的性质,解只有一个运算符号的方程;

  3.列方程解决问题的步骤和方法,解答一步计算的实际问题。全单元编排七道例题、两个练习,最后还有整理与练习。

  本单元教学内容的编排有三个特点:

  1. 在教学方程的特征前先认识等式。因此,教学方程从再认等式开始是必要的,符合知识之间客观存在的联系,也符合学生的学习需求。

  2. 依据掌握知识的一般规律,教学方程知识先初步认识方程,再教学解方程的方法,然后应用方程解决实际问题。教材以等量关系贯通全单元,在认识方程时借助现实的相等情境写出方程,在应用方程时把实际问题的等量关系用符号化的方式抽象成方程。方程的概念随着这条主线逐渐形成。

  3. 利用等式的性质解方程,这是《数学课程标准(实验稿)》规定的,有利于中小学数学的衔接。为了便于教学,把等式的性质分成两条,解方程分成两段。这样编排体现了知识由易到难,技能从会到熟,等式性质及其应用紧密结合。

  (二)教材为什么用天平图创设情境?怎样教学方程的意义?

  等式是一个数学概念。天平是计量物体质量的工具,它的两臂平衡或者不平衡,分别表示两端的物体质量相等或者不相等。教材多次以天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,帮助学生理解式子的意思。例1写出的等式表示2个50克砝码和1个100克砝码的质量相等,例2写出的式子有的是等式,有的不是等式,尽管每个式子里都有字母x,联系天平图能体会各个式子的含义,从经验系统里提取等式的正例与反例。

  教学方程的意义,要指出它的主要特征。如果让学生把例1和例2里的五个式子分类,有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识了方程的特征。

  教学方程的意义,要体会它是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。

  (三)为什么用等式的性质解方程?怎样教学等式的性质和解方程?

  过去,小学数学习惯于用四则计算各部分的关系解方程。中学数学用等式的性质解方程。显然,中小学关于解方程的教学长期不衔接。虽然小学阶段的教学效果不错,学生解方程的技能熟练,但只能解比较简单的方程。进入中学以后,原有的思维定势干扰了继续学习,不能适应较复杂的方程,造成中学阶段教学解方程的难点不在知识本身,而在消除原有的思维习惯。因此,《数学课程标准(实验稿)》改进了小学阶段的教学,用等式的性质解方程。

  等式的性质分成两条教学,例3是等式的两边同时加上或减去同一个数,结果仍是等式。例5是等式的两边同时乘或除以同一个不是0的数,结果仍是等式。教学等式的性质,仍然用天平平衡的情境,容易体会天平两边的物体质量发生相同的变化,天平保持平衡,由此得到等式的两边进行同样的运算,结果还是等式,体现了从具体到抽象的过程。

  例3从四组天平图得出四组等式,编写很有层次。每组左边的天平与等式是原来的状态,右边的天平两边添上或去掉同样的砝码,相应的等式两边加上或减去同一个数。各组天平与等式,都是等式性质的一个具体案例。第一组等式由已知数组成,后三组等式里含有字母,等式从不含有字母到含有字母,体现了性质的包摄性。前两组等式的两边加上相同的数,后两组等式的两边减去同一个数,四组等式合起来得到一条完整的性质。教材让学生在各组右边式子的括号里填数,体会两边加上或减去“同一个数”;在圆圈里填等号,体会原来等式变化后仍是等式,从而充分感知等式性质的内涵。

  例5教学等式的另一条性质,编写思路与例3相同,可以让学生充分利用前面的学习经验。教学时要注意三点:一是第一组天平图的两边添上的物体与原来物体的质量相等,要把这种现象视作原来的质量乘2。第二组天平图把天平两边的物体都平均分成3份,去掉2份,剩下1份,要理解成原来的质量除以3。二是根据天平上物体的质量发生变化以及天平保持平衡,先在每组右边式子的括号里填数、圈里填等号,再把各个等式的两边进行相同的变化,结果仍是等式,抽象出等式的性质。三是让学生体会等式的两边不能除以0,把“0不能做除数”的经验迁移过来。至于等式两边都乘0,结果是0 = 0,虽然也是等式,但已失去了现实意义,因而等式的两边一般不同时乘0。

  本册教材不要求解未知数是减数的方程。

  例4先看天平图写出方程,把解方程置于解决实际问题的情境中,体现这是解决问题的一种方法。学生能在天平图上直观地感受求正方体的质量,只要在天平的两边都去掉10克。教材中小卡通的思考是对直观思维的抽象,包括两个内容:一是为了得到x的值,要使方程的左边只剩下x;二是使方程左边只剩x的方法是等式两边同时减去10。例题示范了解方程的步骤和书写格式,其中x+10-10=50-10是关键的一步,在初学解方程时,应要求写出这样的一步。

  在学生初步掌握解方程的要领之后,为形成解方程的能力,教材做了三点安排:首先是第6题的天平两边都去掉1个梨或都去掉3个橘子,很快就能得到答案,借助图画直观地为浓缩解方程的思维过程作了铺垫。接着在第7题里让学生在等式右边填写运算符号和数,还要想想左边怎样才能只剩x,右边应该填什么,为什么,“扶”着学生简化书写过程。最后是第9题的找错与改错,防止简化书写时发生类似的错误。

  应用第二条等式性质解方程,教材的编排与前面相似,也是编排了一道例题和一道“试一试”,本册教材不要求解未知数是除数的方程。

  (四)本单元列方程解决哪些实际问题?怎样教学?

  由于本单元只解含有一个运算符号的方程,因此只能列方程解决一步计算的问题。这些问题是相差关系、倍数关系中较难的问题,以及已知图形的面积求有关长度的问题,如果列算式解答,分析数量关系要进行连续的推理,如果列方程解答,思路比较顺畅。一个问题用什么方法解答,是由问题的数量关系决定的。在数量关系式里,如果未知数量在等号的一边,已知数量在等号的另一边,沟通了未知与已知的联系,那么列算式解答。如果等号的某一边既有已知数量,也有未知数量,那么列方程解答。本单元要让学生体会为什么列方程解题,为什么设未知数为x。这些体验是解决问题的思想方法,获得这些体验就会自觉遵循列方程解决问题的步骤。

  教学例7与“试一试”,突出寻找等量关系的思维过程,利用实际问题里的相差数或倍数,从“多几(少几)”“是几倍”等概念得出等量关系。例7的等量关系在讨论中得出,“试一试”的等量关系让学生填空写出,凸现等量关系对列方程的支持作用。实际问题用图画、表格、文字等多种形式呈现,有益于形成寻找等量关系的能力。单元结束时的“整理与练习”,讨论“列方程解决实际问题是怎样想的”,自我评价“根据数量间的等量关系列方程”的学习状况,都是引导学生体验等量关系在解题中的地位与作用。

  (五)与以前的教材比,本单元教材还有哪些变化?

  本单元教材与过去的教材相比,还有两点变化。一是关于得数的检验。过去和现在的教材都重视检验,但是,过去注重对解方程的检验,而且十分强调格式。要把x的值代入原方程,列出等号左边的算式并算出得数;要与等号右边的数比较,写出“左边=右边”;最后还要写出结论:x等于几是原方程的解。由于格式烦琐,用于书写检验的时间比解方程还多,因而学生把检验视作负担,被动地进行。现在的检验分两种情况,一种是检验解方程是否正确,另一种是检验实际问题的答案是否合理。例4里“把x = 40代入原方程,看看左右两边是不是相等”指出了解方程的检验方法,至于检验的过程则不要求写出来。本册教材里的方程只有一个运算符号,学生会感到用口算进行检验很方便。教师要允许学生用口算进行检验,减少书写麻烦,这样才会自觉检验,形成习惯。例7的检验不是代入原方程,因为代入原方程只能检验解方程,不能检验列出的方程是否符合实际问题的数量关系。这道题要检验算得的小军跳高成绩是不是比小刚多0.06米,可以利用1.45 - 1.39、1.39 + 0.06或者1.45 - 0.06中的任何一个算式进行检验。只要结果符合题意,列方程和解方程就都是正确的。

  二是本单元例4的最后只指出“求方程中未知数的值的过程,叫做解方程”,没有讲“使方程左右两边相等的未知数的值,叫做方程的解”。解方程与方程的解是两个概念,容易混淆。学生必须懂得“解方程”的意思,否则看到冠于数学习题的“解方程”还不明白要求做什么,应该怎样做。至于“方程的解”完全可以用“方程中未知数的值”代替,后者容易懂。因此,不提“方程的解”减轻了学生不必要的学习负担。

  二、单元教学目标:

  1、使学生在具体的情境中,理解方程的含义,初步体会等式与方程的关系;初步理解等式的性质,会用等式的性质解简单的方程,会用方程解决一步计算的实际问题。

  2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象成式与方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象思维能力和符号感。

  3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯;获得一些成功的经验,进一步树立学好数学的自信心,产生对数学的兴趣。

  三、教学重难点的认识及处理意见

  1、重点:理解方程的意义,会用等式的性质解方程。

  2、难点:等式性质的理解及列方程解决实际问题。

  3、处理意见:

  (1)列方程解决实际问题的关键是寻找等量关系,这是教学的重点,也是学生学习的难点。为此,在教学方程的意义和解方程时,利用天平图和其他图画直观形象地显示等量关系,渗透寻找和利用等量关系的思想方法。

  (2)暂时不要鼓励对数量关系的发散性思考,也不要提倡列出的方程多样,确保把握和应用事件里的最基本的等量关系。这对以后的教学十分重要。

  四、学情分析

  方程是刻画现实世界数量关系的数学模型。本单元是在学生已经完成整数、小数的认识及其四则计算的学习,积累了较多的数量关系的只是,并学会用字母表示数的基础上进行教学的。方程作为一种重要的数学思想方法,它对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。同时,这部分内容也是学生进一步学习数学和其他学科的重要基础。教材首先结合具体的情境,认识等式和方程,了解等式与方程的关系;探索并理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”,学会解只含有加法或减法运算的简单方程;会列方程解决一步计算的实际问题。此外教材还安排了整理与练习,帮助学生进一步理解和掌握所学内容,建立合理的认知结构。

  五、对重要教学情(景)境的安排说明

  1.教材第2页的试一试的第2题与练一练的第第3题在列方程时不能列成“20-12=x、16.8÷4=x”,它们虽然是方程,但仍是算术思路,不易让学生体会数量间的等量关系,对今后的教学也是有百害而无一利。

  2.教材第8页的例7,结合情境图教学时,主要是能找出等量关系,当然关键还是要会解方程。且应让学生了解用方程解决问题的一般步骤是:找等量关系;写设句;列方程;解方程;检验。

  六、对课内外练习的选用意见

  1.教材中第2页的试一试、练一练中的第3题要让学生先口头说一说意思,然后再列方程,这样便于学生理解掌握等量关系。

  2.教材第4页的练一练第1题与第6页的第7题相类似;第8页的练一练第1题与第10页的第2题相类似。目的都是让学生正确运用等式性质,体会解方程的策略和思路,理解解方程的关键步骤。

  3.教材第13页的“探索与实践”一定要充分发挥学生的自主能动性,让学生在操作与观察中培养学生的创新思维。

  七、单元教学课时安排建议

  本单元共8课时教学,另可增加1课时进行综合检测与讲评等。具体安排如下:

  第1课时:教学1-2页的例1、例2和“试一试”,完成随后的“练一练”和练习一的第1-3题。

  第2课时:教学3-4页的例3、例4和“试一试”,完成随后的“练一练”和练习一的第4-6题。

  第3课时:完成练习一的第7-12题。

  第4课时:教学第7-8页的例5、例6和“试一试”,完成随后的“练一练”和练习二的第1-4题。

  第5课时:教学第8-9页的例7和“试一试”,完成随后的“练一练”和练习二的第5-7题。

  第6课时:完成练习二的第8-12题。

  第7课时:指导学生“回顾与整理”,完成“练习与应用”的第1-4题。

  第8课时:完成“练习与应用”的第5-7题和“探索与实践”部分的两道题。

苏教版五下《方程》教学设计 篇3

  教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

  教学目标:

  1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

  2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

  3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

  教学过程:

  一、练习与应用

  1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

  2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)

  二、探索与实践

  1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

  2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨

  三、与反思

  在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

  四、阅读“你知道吗”可以再查找资料,详细了解。

  五、课堂这节课我们复习了哪些内容?你有了哪些收获?

苏教版五下《方程》教学设计 篇4

  教学目标:

  1.知识与技能:结合具体的问题,使同学们学会用解方程和用方程解决具体的问题。

  2.过程与方法:结合课本内容和实际问题来使同学们形成用方程解决问题的观念。

  3.情感态度价值观:在学习方程解决问题的过程中培养同学们对于学习数学的兴趣,培养同学们克服困难的品质,培养同学们探索新知的勇气和信心。

  教学过程:

  一、回顾与交流。

  1.复习方程概念。

  什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

  判断下面是不是方程:

  3X+5

  6+8=14

  6X=15

  7X+315

  (通过这个教学使学生充分理解方程的定义)

  让学生先独立解课本P61.T1.两道解方程的题目再让学生说说是怎样解的。

  通过这里的两道练习复习小学所学习的解方程的方法(即根据等式的性质来解。)

  2.解简易方程。

  复习61页第二题

  首先让学生找出这三个题的等量关系,让学生分小组讨论讨论,在小组内说一说怎样找的等量关系。然后请学生在班内汇报一下。再请三位同学演板,并请演板的同学解释自己的做法。

  (在这个过程中,让学生首先学会找出题目的等量关系,再根据等量关系去列方程,使学生养成用方程解决问题的时候,要懂得方程是根据等量关系列出的。)

  集体订正:解(1)方程是怎样想的,检查解方程时每一步依据什么做的。(2)方程与(1)有什么不同,解方程时有什么不同? 师生共同小结解方程的一般步骤(略)。怎样检验方程的解对不对? 增加找数量关系练习。

  1.六一班有50人,其中男生有28人,女生有多少人?

  2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?

  首先让学生独立找出题目中的等量关系,然后让同桌2人互相说一说,然后再解答。

  二、巩固与应用。

  引导学生做课本巩固练习题

  1.解方程。组织学生独立完成,然后让学生上去讲一讲解题的方法。

  2.看图列出方程,并求出方程的解。首先让学生在小组内说一说解决的方法,再请学生汇报交流。

  3.看图理解题意,引导学生分析数量关系,再列方程解答。请学生演板,演板后组织学生讨论。

  4.理解文字题,根据数量关系列出方程并求解。请学生找出题中的等量关系,再让学生完成。

  三、总结提高。

  通过这节课的学习,你解决了那些问题,还有那些困惑?

  (通过学生的汇报,查漏补缺,找出这节课可能没有涉及到的问题加以解决。)

  四、习题设计。

  1.课本62页第5题。这里的两个小题,第1小题是用字母表示,学生要想用字母表示出来,必须先找出题目的等量关系。第2小题是用方程解决问题,除了要找出等量关系外还要列出方程并解答。

  2.课本62页第6题。这是一道拓展性的习题,是数与形的结合,通过这道题的练习,除了锻炼学生用方程解决问题的能力,同时也复习了有关几何的知识。

苏教版五下《方程》教学设计 篇5

  一、教学目标:

  1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

  2、会用等式性质解形如x+5=12的简单方程。

  3、培养观察、分析概括的能力。

  二、课时安排:

  1课时

  三、教学重点:

  能用等式的性质解简单的方程。

  四、教学难点:

  了解等式的性质。

  五、教学过程

  (一)导入新课

  故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?

  (板书:大象的体重=石头的重量)

  师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

  检查预习。

  (二)讲授新课

  探究一:学习等式性质

  1、师操作:在天平两侧各放一个5克砝码。

  提问:你能用一个等式表示天两边关系吗?

  提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

  提问:你还能用一个等式表示吗?

  教师呈现其他天平直观图,鼓励学生观察并写出等式。

  全班交流,

  教师总结概括出等式性质。

  等式两边都加上同一个数,等式仍然成立。

  师操作在刚才的基础上一个一个减砝码。

  提问:你能用等式来表示吗?

  提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

  提问:你还能用一个等式表示吗?

  教师呈现其他天平直观图,鼓励学生观察并写出等式。

  全班交流,

  教师总结概括出等式性质。

  等式两边都减去同一个数,等式仍然成立。

  3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

  (三)重点精讲。

  探究二:学习解方程

  师板书x+2=10问:用天平如何表示?

  问:如何用刚才的知识解方程?(两边都减去2)

  1、师根据学生回答板书并画出天平图。

  2、师在解题示范时要注重“解”和“等于号”的书写要求。

  3、交代检验方法。

  4、学生试着解方程。

  y-7=12 23+x=45

  组内交流收获和疑惑。

  小组汇报。

  教师总结板书:根据等式的性质解方程。

  (五)随堂检测

  1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

  2、看图列方程,并解方程。

  3、解方程。

  (1)x 19 = 2

  (2)x - 12.3 = 3.8

  4、看图列方程,并解方程。

  5、看图列方程,并解方程。

  6、看图列方程,并解方程。

  板书设计

  X+5=7 x-5= 7

  解:X+5-5=7-5解:x-5+5=7+5

  X=2 x=12

  等式的两边同时加上或者减去同一个数,等式仍然成立。

苏教版五下《方程》教学设计 篇6

  第一单元《方程》单元评价

  主备人:孙丽萍

  评价内容:

  第一单元《方程》

  评价项目:

  知识与技能方面:是否理解并掌握形如ax±b=c、ax÷b=c和ax±bx=c等方程的解法;能否在具体情境中应用上述方程解决相关的两、三步计算的实际问题;是否会对列方程解决问题的过程进行检验。

  数学思考方面:能否在列方程解决实际问题的过程中,主动进行分析、比较、抽象和概括;能否有条理地表达列方程解决实际问题的思考过程,抽象能力和符号感是否得到相应的发展。

  解决问题方面:应用方程的思想方法解决实际问题的意识是否有所增强;能否利用画图、列表的方法理解有关的实际问题,感受解决问题策略的多样性;能否主动反思列方程解决问题的过程,并适当解释结果的合理性。

  情感与态度方面:是否乐于与他人合作交流;是否有自觉检验的习惯;是否获得一些成功的体验,并进一步树立学好数学的自信心。

  评价方式:

  采用定性描述和定量刻画相结合的方式,作出合理的、激励性的评价。

  具体评价内容:

  一、填空。

  1、三个连续的偶数,最小一个是a,另外两个分别是( )、( )。

  2、某运动上衣原价198元,降价后是b元,价格降低了( )元。

  3、一头水牛的体重x千克,一头大象的体重比一头水牛的体重的5倍还多95千克。这头大象的体重是(   )千克。

  4、果园里有桃树a 棵,苹果树的棵数是桃树的3倍。苹果树有( )棵,苹果树与桃树一共有( )棵,苹果树比桃树多( )棵。

  5、京、沪线全长s米,火车从北京开往上海,每小时行v千米,用了t小时到达。写出表示时间的式子( ),当s=1950千米,v=150千米/小时,火车从北京到上海需要( )小时。

  二、解方程。

  7.8+5x=32.8 0.5x-3.7=4.2

  17.23-10x=9.6 3x+2.1x=18.36

  8x-0.5x=15 12.5-6x=9.5

  6x-2.4=0.36 5x÷15=15

  三、列方程解决实际问题。

  1、吴老师用72厘米长的铁丝做了一个长方形的教具,长20厘米,宽多少厘米?

  2、买相同的4双袜子和相同的2双鞋子,一共需要95.2元。已知鞋子每双34元,袜子每双多少元?

  3、王大叔的养殖场里有母鸡2100只,比公鸡的4倍多100只,公鸡有多少只?

  4、水果超市有500千克苹果,卖出6筐后,还剩338千克,平均每筐苹果多少千克?

  5、如图所示,明明家到学校的距离比东东家到学校的距离远600米,明明家距东东家2700米。东东家到学校的距离是多少米?

  明明家 学校 东东家

  6、小芳和小强一共有画片24张。小芳的画片张数是小强的3倍,小芳有画片多少张?

  7、去年爸爸比小明大25岁,明年爸爸的年龄是小明的6倍。今年爸爸和小明各是多少岁?

  8、一个书架,上层放的书是下层的2.4倍。如果把上层的书搬56本到下层,这两层书的本数就同样多。原来两层各放多少本书?

  课前思考1:

  建议将最后两题作为思考题,不计入基本成绩,作为鼓励成绩。因为这两题对大部分学生来说有些困难,尽管第7题的方程式很简单,但学生会被去年、明年、今年三个时间词语所迷惑,没有想到两人这三年中的年龄差是不变的。第8题所设的未知数在等号两边,所列的方程比较复杂,尽管在前几节练习课上补充过,但作为基本题让学生完成,可能会有不少学生出现错误。所以我建议将我们平时补充的稍有难度的练习题作为思考题来设计,做对学生可提高积极性,做错学生也不伤自尊心。

  课前思考2:

  通过本次练习,使学生巩固强化形如ax±b=c、ax÷b=c和ax±bx=c等方程的解法,并更多的关注怎样从问题情景中分析数量之间的相等关系,更多的关注怎样根据数量关系列出方程,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解,提高解决问题的能力和信心。

  单元评价分析:

  1、总体情况:今天做的单元练习卷,孙老师对上面的练习进行了调整与补充,增加了3题思考题,应该说孙老师设计的练习的难度系数是比较高的,基本分中列方程第2小题稍复杂,列方程解应用题中第7题也少有难度。从今天的练习情况看,整体情况还可以,有25人基本分达优秀,15人80分以上,7人70分以上,2人不合格。附加的思考题,有2人3题全对,对1―2题的有20人,学生单元练习的整体情况比我想象中的好,看来,孩子们进入了六年级,确实在学习上自觉多了,大部分学生都要求上进。

  2、存在问题:

  (1)填空题第1小题思维定势,原来做到过的类型是:三个连续偶数,中间一个是a,另外两个分别是( )、( )。今天变成:三个连续偶数,最小的一个是a,另外两个是( )、( )。学生的答案变成一样的了。没有好好审题。

  (2)解方程第2小题稍复杂,学生不会解。

  (3)应用题第2小题房间的面积不变,相等,学生没有看清方砖的条件是边长还是面积?

  (4)第6题求出小明明年的岁数后,要求今年的岁数还要减1,很多学生没有看清问题。

  (5)部分学生对思考题有危难情绪,有部分基本分是优秀的学生没有做思考题,特别是碰到以前没有研究的习题不肯动脑筋。

  (6)有两个学生与全班学生差距实在太大了,要想些方法进行补救。

  3、改进措施:

  (1)继续加强学习习惯的培养,从外在的形式转向内在的自我要求,学生喜欢数学是学生学好数学的前提。要想法进一步培养学生对数学的兴趣,要让学生体验成功的喜悦与自豪,体会到只要上课认真听,积极思维,数学是容易学好的。

  (2)继续与学生约定,提高单位时间内的效率。

  (3)进一步与部分家长联系沟通,分析原因,共同帮助孩子进步。特别是两个这次练习不合格的学生,要谈心,要加强个别辅导的力度。

  (4)对近阶段有进步的学生及时鼓励,逐渐减少学习困难生的人数,将优秀人数不断扩大。

  单元评价反思1:

  今天的数学课上进行了第一单元的单元练习,一节课的时间对于接近一半的学生来说有些紧张。批完两个班的数学练习卷后,我对两个班练习中存在的问题进行了分析。

  一、总体情况

  六(1)班中17人优秀,3人不及格;六(4)班中27人优秀,4人及格,没有不及格。

  二、存在问题及相应措施

  1、从填空部分的错题中可以看到有些学生对于“用含有字母的式子表示某个数或数量关系”还存在困难,平时在教学第一单元时这方面练习较少,有些学生还没有真正掌握用含有字母的式子来表示一些数或数量关系的方法,对于数量间的一些关系不会分析。在明天的讲评课中增加这方面的练习,并且关注这方面还存在困难的学生,了解他们的学习中遇到的问题或障碍,采取相应对策。

  2、解方程部分:大部分学生已掌握形如ax±b=c、ax÷b=c和ax±bx=c等方程的解法,但仍有一部分学生在计算过程中错误百出,如看错数字、计算小数乘、除法错误等,也有一部分学生在解ax±b=c的方程时把它当成ax±bx=c的方程,造成错误;而且从学生解方程的检验过程中可以看出没有真正进行检验,只是形式上的检验。在讲评课中要让学生体会到检验的真正意义,养成良好的学习习惯和计算习惯。

  3、列方程解决实际问题部分:从学生练习情况可以看出一部分学生在具体情境中应用上述方程解决相关的两、三步计算的实际问题还存在困难,解决实际问题的过程中主动进行分析、比较、抽象和概括的能力较差,特别是如何选择合适的数量关系来列方程。在以后的课上要更注重对实际问题中数量关系的分析,多给学生思考和口头表达的机会,而且可以增加相应的练习,如对于同一问题说出不同的数量关系并列出不同的方程;还可以同一问题选择不同的方法解答,体会列方程解决问题的思想。

  4、两个班中均有几位学习特别困难的学生,特别是六(1)班的俞亮和朱亚伟,要多花时间进行课后的辅导,并多与家长联系,多交流。

  单元评价反思2:

  本次单元练习用了50分钟时间,对大部分学生来说时间紧了点,导致没时间检查、思考题没来得及做。以下是我对这次练习存在的问题及反思:

  1、总体情况

  班中52人,有17人优秀,3人不及格(其中两个44分),3人及格。

  2、存在问题

  ⑴填空题第1小题错了16人,都是审题不清,把3个连续的偶数做成了连续的自然数。第8小题学生受思维定势,错了12人,近来一直把一份数设为x,几份数就是几x,而这题把几份数设为x,求一份数,也有学生没看清题意。

  ⑵解方程第2小题17.2×3-10x=9.6稍复杂,平时的练习中也没有训练过,学生不会解。

  ⑶第三大题做错的有6人,其中3人计算出错,3人方程列错。这一型平时并没少练,还是有学生没能真正的掌握。

  ⑷列方程解应用题失分的学生就更多了,一部分是小数乘、除法没过关,方程列队但计算出错了,更多的则是用方程解决两、三步计算的实际问题还存在困难,特别是如何选择合适的数量关系来列方程,并能主动进行分析的能力较差,没有养成主动检验的习惯。

  ⑸思考题只有1人3题做对,大部分学生空着没做。

  3、措施

  在平时课中增加对学生薄弱环节的练习,并且关注这方面还存在困难的学生,了解他们的学习中遇到的问题,采取对策。

  对本次练习成绩优秀的学生要加以肯定,使其继续努力,对成绩不理想的要谈心,帮其寻找根源,并加大个别辅导的力度。积极与家长联系沟通(特别是对三个这次练习不及格的学生),共同帮助孩子进步。

苏教版五下《方程》教学设计 篇7

  教学目标:

  1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

  2、利用探索发现的等式的性质,解决简单的方程。

  3、经历了从生活情境的方程模型的'建构过程。

  4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

  教学重难点:

  重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

  难点:推导等式性质(一)。

  教学准备:

  一架天平、课件及班班通

  教学过程:

  一、创设情境,以情激趣

  师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

  学生讨论纷纷。

  师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

  二、运用教具,探究新知

  (一)等式两边都加上一个数

  1、课件出示天平

  怎样看出天平平衡?如果天平平衡,则说明什么?

  学生回答。

  2、出示摆有砝码的天平

  操作、演示、讨论、板书:

  5=5 5+2=5+2

  X=10 X+5=15

  观察等式,发现什么规律?

  3、探索规律

  初次感知:等式两边都加上同一个数,等式仍然成立。

  再次感知:举例验证。

  (二)等式两边都减去同一个数

  观察课件,你又发现了什么?

  学生汇报师板书:

  X+2=10

  X+2-2=10-2

  X =8

  (三)运用规律,解方程

  三、巩固练习

  1、完成课本68页“练一练”第2题

  先说出数量关系,再列式解答。

  2、小组合作完成69页“练一练”第3题。

  完成后汇报,集体订正。

  四、课堂小结

  这节课你学到了什么?学生交流总结。

  板书设计: 解方程(一)

  X+2=10

  解: X+2-2=10-2 ( 方程两边都减去2)

  X =8

苏教版五下《方程》教学设计 篇8

  四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。

  第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。

  第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例 1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。

  全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。

  一、 解稍复杂方程的策略转化成简单的方程。

  两道例题里的方程都要分两步解,通过第一步运算,把稍复杂的方程转化成五年级(下册)里教学的简单方程,使新知识植根于已有经验和能力的基础上。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。这两道例题突出转化的过程,不仅使学生掌握解稍复杂的方程的方法,还让他们充分体验转化思想,发展解决问题的策略。

  1. 从各个方程的特点出发,使用不同的转化方法。

  解形如axb=c的方程,一般根据等式两边同时加上或减去同一个数,结果仍然是等式的性质化简。例1在列出方程2x-22=64以后,教材里写出了解这个方程的第一步: 2x-22+22=64+22。教学要让学生理解为什么等号的两边都加上22,体会这样做是应用了等式的性质,感受这样做的目的是把稍复杂的方程化简。过去教材里强调把ax看成一个数,是为了应用加、减法中各部分的关系解方程,新教材应用等式的性质解方程,突出转化的思想和方法。

  解形如axbx=c的方程,一般应用运算律或相应的知识化简。axbx可以改写成

  (ab)x,这已经在四年级(下册)用字母表示数时掌握了,现在只要计算ab,就能实现化简原方程的目的。教学时仍然要让学生理解为什么可以这样改写,以及这样改写的目的。

  2. 转化后的简单方程,教法不同。

  例1让学生算出2x=?,并求出x的值。这是因为学生具有解2x=86这个方程的能力。教学这样安排,是把转化思想和方法放在突出位置上,促进新旧知识的衔接,有效地使用教学资源。把求得的x的值代入原方程进行检验,在五年级(下册)已经教学。例1提出检验的要求,不仅是培养良好的习惯,还要通过结果是正确的,确认解稍复杂方程的策略和方法是正确的。

  例2把原方程化简成4x=290,没有让学生接着解。教材写出x=72.5并继续算出3x=217.5,是因为72.5米和217.5米是实际问题的两个答案。学生以往解答的问题,一般只有一个问题,这道例题有两个问题,需要完整呈现解题过程,在步骤、书写格式上作出示范,便于学生掌握。另外,检验的思路也有拓展。由于题目的特点,不能局限于对解方程的检验,还要联系实际问题里的数量关系,检验算得的陆地面积和水面面积是不是一共290公顷,水面面积是不是陆地面积的3倍。教学时要注意到这一点,既保障解方程是正确的,更保障列出的方程符合实际问题里的数量关系。

  3. 加强解方程的练习。

  前面曾经说到,例1和例2都有列方程和解方程两个教学内容,列出的方程必须正确地解,才可能得到正确的答案。因此,两个练习的第1题都安排了解方程。练习一在例1解方程的基础上向两个方向扩展,一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程,二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法,会进行小数四则计算,就能够适应这两个方面的扩展。要注意的是,小学阶段不要求解形如a-bx=c的方程。因为解这个方程,如果等式的两边都减a,就会出现-bx=c-a,不但等号左边是负数,而且右边c比a小;如果等式的两边都加bx,就出现a=c+bx,这些都是现在难以解决的问题。练习二在例2解方程的基础上带出形如ax-bx=c的方程,解方程涉及的除法计算都控制在三位数除以两位数以及相应的小数除法范围内,学生一般不会有困难。

  还有一点要提及,整理与练习中安排小组讨论像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解,表明教材十分重视引导学生组建认知结构。如果既从两个方程的特点回顾解法的不同,又从策略角度进行整理,对学生是有好处的。练习中出现的方程15x2=60,是为应用三角形面积公式解决实际问题服务的。

  二、 列方程解决实际问题的关键找出相等关系。

  列方程解决实际问题要找到相等关系,方程是依据相等关系列的。其实,某个实际问题为什么选择列方程的方法解答,或者为什么选择列算式的方法解答,经常是由相等关系决定的。所以,两道例题的教学,都是先找出相等关系。

  相等关系是一种数学模型,它把数量关系表达成等式。列算式解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而用已知数量组成的算式求得问题的答案。实际问题里的相等关系也是数量间的关系,它的最大特点是将已知与未知有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。学生在五年级(下册)初步感受了相等关系,能找出简单问题的相等关系。本册教学寻找较复杂问题的相等关系,就应充分利用学生已有的知识经验。

  1. 灵活开展思维活动,找出相等关系。

  较复杂的问题之所以复杂,在于它的数量关系错综复杂。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍数关系,也有相差关系,是两种关系的复合。例2里已知颐和园水面面积与陆地面积一共290公顷,还已知水面面积大约是陆地面积的3倍,这是两个并列的条件。因此,寻找复杂问题的相等关系,要梳理数量关系,分清主次和先后。

  寻找相等关系没有固定的模式照搬、照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找相等关系的教学方法。学生在二年级(下册)已经能解决类似红花有10朵,求红花朵数的2倍少4朵是几朵的问题,对几倍少几这样的数量关系已有初步的理解。因此,例1要求学生找出大雁塔与小雁塔高度之间的相等关系,让他们利用已有的倍数概念和相差概念,通过推理,把比小雁塔的2倍少22米改写成数学式子小雁塔高度2-22,从而得到相等关系。例1为什么提出还可以怎样列方程,这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同;还要引导学生体会例题里呈现的等量关系,得出答案时的思考比较顺,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。

  怎样合理利用例2里的两个并列的已知条件?教材选择了线段图。先在表示水面面积的线段上填3x,再在线段图的右边括号里填290,在图上感受水面面积和陆地面积之间的倍数关系和相并关系。然后通过填空写出等量关系,体会水面面积和陆地面积一共290公顷是这个实际问题里的等量关系。

  2. 加强写式练习,进一步把握数量关系,为列方程打基础。

  含有字母的式子是方程的重要组成部分,根据数量关系列方程时,都要写出含有字母的式子。是否具有用字母表示数的意识,能否顺利写出含有字母的式子,对列方程解答实际问题是至关重要的。因此,教材加强写式的练习。

  练习一第2题写出表示梨树棵数的式子3x+15,表示鳊鱼尾数的式子4x-80,都是解答几倍多几、几倍少几实际问题所需要的基本技能。安排写式练习,使学生进一步理解数量关系,养成顺着梨树比桃树的3倍多15棵、鳊鱼比鲫鱼的4倍少80尾这些数量关系的表述进行思考,并转化成数学式子的'习惯,从而选择最适当的相等关系解决实际问题。所以,这道练习题既是写式训练,也是思路引导。

  练习二第2题是和倍、差倍问题的专项训练。根据黄花x朵和红花朵数是黄花的3倍,先写出红花有3x朵,用含有字母的式子表示红花的朵数,再用x+3x(或4x)表示两种花一共的朵数,用3x-x(或2x)表示红花比黄花多的朵数,发展联想能力。联想到的式子,正是方程里等号左边的部分,这道题也在写式训练的同时,进行思路引导。

  3. 列方程解答新颖的问题,拓展等量关系。

  本单元安排两节练习课,分别教学练习一第6~13题、练习二第6~11题。着重解答一些与例题不同的实际问题,找到这些问题的等量关系是教学重点,也是难点,对发展数学思考非常有益。

  练习一第7题起拓展等量关系的作用。第(1)小题画出了三角形,学生看到图上的高和底,就能想到三角形的面积计算公式,于是把底高2=三角形的面积作为解题时的等量关系。第(2)小题利用熟悉的括线表示19.8元的意思,形象显示了3枝铅笔的钱+1个文具盒的钱=一共的钱是问题里的等量关系。教材的意图是通过这些题打开思路,让学生体会不同的问题里有不同的等量关系,两个部分数之和往往是可利用的等量关系。这就为继续解答第8、9、12题作了有益的铺垫。至于第13题,把两种温度的换算公式作为等量关系。公式在题中已经揭示,只要在它上面体会已知华氏温度求摄氏温度,列方程解答比较好。反之,已知摄氏温度求华氏温度,依据公式能直接列出算式。

  例2和练一练分别是典型的和倍、差倍问题,已知的总数或相差数是等量关系的生长点。练习二第7~11题的题材和例题不同,且各有特点。但是,等量关系的载体仍然是已知的总数与相差数。第7题用线段图配合展示题意,便于学生发现小丽走的米数+小明走的米数=两地相距的米数这一等量关系,并把这个经验迁移到解答后面的习题中去。

苏教版五下《方程》教学设计 篇9

  教学目标:

  1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

  2、会用方程表示简单的等量关系,会列方程解决简单问题。

  3、感受式与方程在解决问题中的价值,培养初步的代数思想。

  教学重点:

  明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

  教学难点:

  找等量关系式,用方程解决实际问题。

  教学过程:

  一、导入

  我们都记得这首儿歌

  一只青蛙一张嘴,两只眼睛四条腿;

  两只青蛙两张嘴,四只眼睛八条腿;

  请你来接下句

  三只青蛙_________;

  五只青蛙呢?

  N只青蛙呢?

  一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

  二、进行复习

  1、用字母表示数

  (1)同学们想一想,在数学中有哪些地方常用字母来表示?

  生列举:数量关系(路程、速度、时间 即s=vt)

  计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)

  运算定律(加法结合律:a+b+c=a+(b+c)等)

  (2)请同桌之间相互举两个这样的例子。

  (3)你们知道为什么用字母表示数吗?

  (4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

  (5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

  算法有两种:其一:算术方法:160÷(5+3)=20

  依据:总插秧数量÷时间=单位时间量

  其二:列方程:x(5+3)=160

  依据:单位时间量×时间=总插秧数量

  观察比较:以上两种解法有哪些相同点和不同点?

  相同点:都是根据数量间的相等关系列式。

  不同点:解法一:以已知推出未知,是算术法。

  解法二:把未知数用x表示,列出含有未知数的等式,即方程。

  同学们想一想,等式和方程有什么联系和区别?

  方程有哪些性质呢?(等式 、含有未知数)

  2、方程

  (1)判断下列哪些是方程(说明理由)

  7+8=3×5   4a+5b   a+12=89

  4x=y   3+100>25+y   6+x=0.5×3

  (2)你会解方程吗?从中选择一个试一试。

  (3)如何判断方程的解是否正确?

  (4)列方程解应用题的解题步骤是怎样的?

  讨论后得出:①弄清题意,找出未知数,并用x表示;

  ②找出应用题中数量之间的相等关系,列方程;

  ③解方程;

  ④检验,写出答案。

  3、列方程解决问题

  (1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

  请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

  引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

  (2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

  (3)练习

  ①练一练1

  ②师展示习题:说出下面每组数量之间的相等关系。

  (1)女生人数,男生人数,全班人数;

  (2)苹果的重量,梨的重量,梨比苹果少的重量。

  (3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

  (4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

  ③课本练一练5

  三、小结

  说一说你今天的收获在哪里?

苏教版五下《方程》教学设计 篇10

  一、仔细看题,认真填空(24分)

  1、在15-x=8,75=35,x÷0.9=1.8,4x,79<8.3x,15x=75中,是方程

  有                                   ,是等式有                             。

  2、x-30=8,那么x=(  ),x÷5=(  )。

  3学校买了8个篮球,每个x元,总共付出240元,3x表示( ),240-4x表示(   )。

  4、小芳坐在班上的第1列、第5行,用数对表示是(     );小花坐的位置用数对表示是( 2,3),他坐在第( )列、第( )行。

  5、表示出下面数量间相等的关系式

  (1)某班男生人数比女生人数多7人(               )

  (2)篮球的个数是足球个数的4倍(                )

  (3)梨树比苹果树的3倍多15棵(                )

  6、在( )里填上“>”、“<”或“=”

  ①当a=23时,a+13(   )87

  ②当x=0.8时,x÷2(   )0.4

  ③当y=2时,5y(   )100

  ④当x=9.6时,x-3.8(    )3.8

  7、天平左边的盘里放2个梨,右边盘里放一个梨和3个桃,天平两边平衡. 1个梨和(    )个桃同样重.

  8、天平左边的盘里放一个苹果和3个梨,右边盘里放5个梨,天平两边平衡.(    )个梨和一个苹果同样重.

  二、认真辨析,仔细判断(10分)

  1、因为5+x中含有未知数x,所以这个式子是方程。-----------(    )

  2、等式的两边同时乘或除以一个数,所得的结果仍然是等式。--------(    )

  3、在平面图上,数对(8,3)表示第8行第3列。------------------(    )

  4、含有未知数的式子是方程------------------------------------(    )

  5、方程一定是等式,等式不一定是方程。---------------------------(    )

  三,选择题(10分)

  1、下面式子中不是方程的是(    )

  a、245=3m   b、2x+13=3x-16   c、15=56÷2

  2、3个连续自然数的和是99,中间的数是x,其余两个数分别是(    )

  a、33 31   b、32 33   c、33 34  d、32 34

  3、如果5个连续奇数的和是55,中间的数是n,n为(    )

  a、11   b、10   c、9  d、13

  4、甲数是20,比乙数的5倍少5,乙数是(    )

  a、5   b、3   c、4

  5、爸爸今年x岁,妈妈今年x-2岁,10年后,他们相差(   )岁。

  a、12   b、2   c、8

  四.解方程,最后一小题请写出检验过程。(18分)

  0.3 x=7.2          x÷14=98         0.8+x=9.1

  x-257=582         1.5 x=4.5         x-105=15

  五、列方程解答下列问题。(每题7分,共28分)

  1.钢琴的黑键有48个,比白键少26个。白键有多少个?

  2.小红今年重36千克,比去年增加了2.5千克,她去年的体重是多少千克?

  3.一种饮料有两种包装规格,大瓶容量是小瓶的5倍,大瓶容量是1.5升,小瓶容量多少升?

  4、小红今年重36千克,比去年增加了2.5千克,她去年的体重是多少千克?

  六、根据数量关系列出方程。(每题2分,共10分)

  1.男生有x人,女生的人数是男生的1.2倍,男女生一共有440人。

  2.图书馆原有图书1500套,借出x套后,又进了200套,图书馆这时有图书900套。

  3.小明今年x岁,爸爸今年42岁,3年后爸爸比小明大27岁。

  4.篮球每只m元,排球每只n元,学校用1200元刚好购买了8只篮球和12只排球。

  5.第一根绳子长a米,第二根绳子长13米,第二根的长度比第一根的2倍还要多6米。

苏教版五下《方程》教学设计 篇11

  本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉及的基础知识比较多,教学内容分成三部分编排。

  第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。

  第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。

  第12~14页全单元内容的整理与练习。

  本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。

  1从等式到方程,逐步构建新的数学知识。

  方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。

  (1) 借助天平体会等式的含义。

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。

  天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

  例2继续教学等式,教材的安排有三个特点: 第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

  (2) 教学方程的意义,突出概念的内涵与外延。

  “含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,学生陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知材料。教材首先告诉学生: 像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的共同特点是“含有未知数”,也是“等式”。这时,如果让学生对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么学生对方程是等式的理解会更深刻。教材接着安排讨论“等式和方程有什么关系”,并通过“练一练”第1题让学生先找出等式,再找出方程,理解等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使学生对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求学生自己写出一些方程并相互交流,让它们在写方程时关注方程的本质属性,从而巩固方程的概念。

  (3) 用方程表示直观情境里的相等关系。

  第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点: 一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。 在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。

  2利用等式的性质解方程。

  在过去的小学数学教材里,学生是应用四则计算的各部分关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《标准》从学生的长远发展和中小学教学的衔接出发,要求小学阶段的学生也要利用等式的性质解方程。因此,本单元安排了关于等式性质的内容,分两段教学: 第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都及时让学生运用等式的性质解方程。

  (1) 在直观情境中,按“形象感受→抽象概括”的方式教学等式的性质。

  教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然保持平衡。这种现象能形象地表示等式的性质,有利于学生的直观感受。

  例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+○20+。学生在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。

  另外,这道例题的8个等式中,有7个让学生在圆圈里填写“=”组成等式,这是引导学生切实关注等式有没有变化。右边的四个等式分别让学生在括号里填出同时加上或减去的数,有利于发现等式的性质。

  例5教学等式的另一个性质。教材注意利用学生前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让学生写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意: 一是让学生正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点学生能够接受。因为前面的教学中,已经多次提到除数不能是0。

  (2) 应用等式的性质解方程。

  例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,学生先从图中能得到求x值的启示: 只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理: 等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让学生联系已有的解方程经验和有关的等式性质,思考“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从学生实际出发,让学生主动学习的教育理念。另外,例4的编写还注意了三点: 一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必须严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导学生根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。

  帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号, 引导学生正确应用等式的性质,体会解方程的策略和思路,理出解方程的关键步骤。学生在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,帮助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。

  3列方程解决实际问题。

  本单元解决的都是一步计算的实际问题,其中大多数都是第一学段里没有出现的。这些实际问题如果列算式解答,学生体会其中的数量关系有一定难度;如果用方程的知识解答,利用的是问题中最本质的数量关系,思路就顺畅得多。

  列方程解决实际问题的关键是找到问题里的等量关系。列方程时的数量关系与列算式时明显不同。列算式时的数量关系把已知和未知隔裂,已知条件作为一方,要求的问题为另一方,通过已知数量的运算得到未知数量。而列方程的数量关系,把已知和未知融合起来,共同参与运算。寻找等量关系是列方程解决实际问题的教学重点,也是教学的难点。为此,教材作了三步安排。

  (1) 教学方程意义的时候,列方程表示简单现象里的等量关系,有第2页“试一试”,“练一练”第3题,练习一第1~3题等。这些简单现象都是学生能够接受的,并以他们熟悉的方式呈现,如天平图、带括线的图画、线段图、图文结合的叙述等。让学生对什么是列方程、怎样列方程,尤其是依据什么列方程、列出的方程表示什么意思有所体会。在寻找等量关系和列方程的时候要注意两点: 一是联系生活经验,按照事情的发生与发展线索,理顺数量关系。如买1件上衣和1条裤子一共用去86元,原有的图书借出56本还剩60本,付出的钱数减电话机的价钱得找回的钱数,妈妈的岁数减小红的岁数得妈妈比小红大的岁数。有了这些等量关系,列方程就方便了。二是暂时不要鼓励对数量关系的发散性思考,也不要提倡列出的方程多样,确保把握和应用事件里的最基本的等量关系。这对以后的教学十分重要。

  (2) 教学解方程的时候,渗透列方程解决实际问题的思想。例4求天平左边正方体的质量,例6求长方形试验田的宽,都是先列出方程再求解。这两道例题的教学重点是应用等式性质解方程,以实际问题为载体有两点好处: 一是初步体会列方程是解决实际问题的一种方法,从而发展解决问题的策略;二是继续体会列方程的依据是实际问题里的等量关系。例4的相等关系是天平两边物体的质量相等,学生已经比较熟悉。例6依据长方形面积公式列方程,是对等量关系的一次引导。教学的时候,既不要冲淡例题的教学重点,又要让学生获得这两点体会。

  (3) 例7和相配合的“试一试”“练一练”教学列方程解决实际问题,主要解决相差关系和倍数关系的问题。这些实际问题里都有一个关于“相差多少”或“几倍”的已知条件,只要抓住这个条件分析相差数或倍数的具体含义,就能找到实际问题里的等量关系。

  首次教学列方程解决实际问题,例7有三个内容: 一是怎样寻找数量间的相等关系,二是这个问题为什么列方程解答,三是列方程解决实际问题的步骤与格式。这三个内容中,第一个最重要,另两个内容都能在第一个内容中得到启示。

  这道例题的相等关系“小军的成绩-小刚的成绩=0.06米”,是从“小刚比小军少跳0.06米”得出的。分析这个已知条件,首先想到小刚跳的米数、小军跳的米数与0.06米是三个有关系的数量;接着想到小军跳的米数多,小刚跳的米数少,0.06米是他们跳的米数的差,等量关系就出来了。把文字叙述的相差关系改变成数学式子表示的相等关系,就列出了方程。

  “小军的跳高成绩不知道,可以设为x米,再列方程解答”这句话是指着等量关系说的。在等量关系中,两个数量已知,一个数量未知,如果把未知的数量设为x米,很容易列出方程。再通过解方程,就能算出未知的数量。这就是为什么列方程解题的原因,学生体会这一点,也就体会了列方程是解决问题的一种策略。于是,解题活动就在寻找等量关系的基础上,很自然地按照“写设句――列方程――解方程”的顺序进行,列方程解决实际问题的一般步骤由此而得出。

  在交流中让学生思考还可以怎样列方程,是因为在分析小军跳的米数多,小刚跳的米数少,他们跳的米数相差0.06米时,学生有可能用“小刚跳的米数+0.06=小军跳的米数”表示等量关系。教材对此表示肯定,并不要求学生一题多解。

  “试一试”辅助学生寻找相等关系,在分析“蓝鲸的体重是一头非洲象的33倍”这个条件的基础上,以填空的形式得出等量关系。其他解题活动由学生独立完成,逐渐熟悉列方程解决实际问题的一般步骤。练习中涉及的等量关系有了扩展,如平行四边形的面积公式、正方形的周长公式、单价×数量=总价等,要尽量让学生独立寻找和应用等量关系列方程。

苏教版五下《方程》教学设计 篇12

  本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉及的基础知识比较多,教学内容分成三部分编排。

  第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。

  第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。

  第12~14页全单元内容的整理与练习。

  本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。

  1从等式到方程,逐步构建新的数学知识。

  方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。

  (1) 借助天平体会等式的含义。

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。

  天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

  例2继续教学等式,教材的安排有三个特点: 第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

  (2) 教学方程的意义,突出概念的内涵与外延。

  “含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,学生陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知材料。教材首先告诉学生: 像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的共同特点是“含有未知数”,也是“等式”。这时,如果让学生对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么学生对方程是等式的理解会更深刻。教材接着安排讨论“等式和方程有什么关系”,并通过“练一练”第1题让学生先找出等式,再找出方程,理解等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使学生对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求学生自己写出一些方程并相互交流,让它们在写方程时关注方程的本质属性,从而巩固方程的概念。

  (3) 用方程表示直观情境里的相等关系。

  第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点: 一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。 在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。

  2利用等式的性质解方程。

  在过去的小学数学教材里,学生是应用四则计算的各部分关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《标准》从学生的长远发展和中小学教学的衔接出发,要求小学阶段的学生也要利用等式的性质解方程。因此,本单元安排了关于等式性质的内容,分两段教学: 第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都及时让学生运用等式的性质解方程。

  (1) 在直观情境中,按“形象感受→抽象概括”的方式教学等式的性质。

  教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然保持平衡。这种现象能形象地表示等式的性质,有利于学生的直观感受。

  例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+○20+。学生在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。

  另外,这道例题的8个等式中,有7个让学生在圆圈里填写“=”组成等式,这是引导学生切实关注等式有没有变化。右边的四个等式分别让学生在括号里填出同时加上或减去的数,有利于发现等式的性质。

  例5教学等式的另一个性质。教材注意利用学生前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让学生写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意: 一是让学生正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点学生能够接受。因为前面的教学中,已经多次提到除数不能是0。

  (2) 应用等式的性质解方程。

  例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,学生先从图中能得到求x值的启示: 只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理: 等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让学生联系已有的解方程经验和有关的等式性质,思考“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从学生实际出发,让学生主动学习的教育理念。另外,例4的编写还注意了三点: 一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必须严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导学生根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。

  帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号, 引导学生正确应用等式的性质,体会解方程的策略和思路,理出解方程的关键步骤。学生在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,帮助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。

  3列方程解决实际问题。

  本单元解决的都是一步计算的实际问题,其中大多数都是第一学段里没有出现的。这些实际问题如果列算式解答,学生体会其中的数量关系有一定难度;如果用方程的知识解答,利用的是问题中最本质的数量关系,思路就顺畅得多。

  列方程解决实际问题的关键是找到问题里的等量关系。列方程时的数量关系与列算式时明显不同。列算式时的数量关系把已知和未知隔裂,已知条件作为一方,要求的问题为另一方,通过已知数量的运算得到未知数量。而列方程的数量关系,把已知和未知融合起来,共同参与运算。寻找等量关系是列方程解决实际问题的教学重点,也是教学的难点。为此,教材作了三步安排。

  (1) 教学方程意义的时候,列方程表示简单现象里的等量关系,有第2页“试一试”,“练一练”第3题,练习一第1~3题等。这些简单现象都是学生能够接受的,并以他们熟悉的方式呈现,如天平图、带括线的图画、线段图、图文结合的叙述等。让学生对什么是列方程、怎样列方程,尤其是依据什么列方程、列出的方程表示什么意思有所体会。在寻找等量关系和列方程的时候要注意两点: 一是联系生活经验,按照事情的发生与发展线索,理顺数量关系。如买1件上衣和1条裤子一共用去86元,原有的图书借出56本还剩60本,付出的钱数减电话机的价钱得找回的钱数,妈妈的岁数减小红的岁数得妈妈比小红大的岁数。有了这些等量关系,列方程就方便了。二是暂时不要鼓励对数量关系的发散性思考,也不要提倡列出的方程多样,确保把握和应用事件里的最基本的等量关系。这对以后的教学十分重要。

  (2) 教学解方程的时候,渗透列方程解决实际问题的思想。例4求天平左边正方体的质量,例6求长方形试验田的宽,都是先列出方程再求解。这两道例题的教学重点是应用等式性质解方程,以实际问题为载体有两点好处: 一是初步体会列方程是解决实际问题的一种方法,从而发展解决问题的策略;二是继续体会列方程的依据是实际问题里的等量关系。例4的相等关系是天平两边物体的质量相等,学生已经比较熟悉。例6依据长方形面积公式列方程,是对等量关系的一次引导。教学的时候,既不要冲淡例题的教学重点,又要让学生获得这两点体会。

  (3) 例7和相配合的“试一试”“练一练”教学列方程解决实际问题,主要解决相差关系和倍数关系的问题。这些实际问题里都有一个关于“相差多少”或“几倍”的已知条件,只要抓住这个条件分析相差数或倍数的具体含义,就能找到实际问题里的等量关系。

  首次教学列方程解决实际问题,例7有三个内容: 一是怎样寻找数量间的相等关系,二是这个问题为什么列方程解答,三是列方程解决实际问题的步骤与格式。这三个内容中,第一个最重要,另两个内容都能在第一个内容中得到启示。

  这道例题的相等关系“小军的成绩-小刚的成绩=0.06米”,是从“小刚比小军少跳0.06米”得出的。分析这个已知条件,首先想到小刚跳的米数、小军跳的米数与0.06米是三个有关系的数量;接着想到小军跳的米数多,小刚跳的米数少,0.06米是他们跳的米数的差,等量关系就出来了。把文字叙述的相差关系改变成数学式子表示的相等关系,就列出了方程。

  “小军的跳高成绩不知道,可以设为x米,再列方程解答”这句话是指着等量关系说的。在等量关系中,两个数量已知,一个数量未知,如果把未知的数量设为x米,很容易列出方程。再通过解方程,就能算出未知的数量。这就是为什么列方程解题的原因,学生体会这一点,也就体会了列方程是解决问题的一种策略。于是,解题活动就在寻找等量关系的基础上,很自然地按照“写设句――列方程――解方程”的顺序进行,列方程解决实际问题的一般步骤由此而得出。

  在交流中让学生思考还可以怎样列方程,是因为在分析小军跳的米数多,小刚跳的米数少,他们跳的米数相差0.06米时,学生有可能用“小刚跳的米数+0.06=小军跳的米数”表示等量关系。教材对此表示肯定,并不要求学生一题多解。

  “试一试”辅助学生寻找相等关系,在分析“蓝鲸的体重是一头非洲象的33倍”这个条件的基础上,以填空的形式得出等量关系。其他解题活动由学生独立完成,逐渐熟悉列方程解决实际问题的一般步骤。练习中涉及的等量关系有了扩展,如平行四边形的面积公式、正方形的周长公式、单价×数量=总价等,要尽量让学生独立寻找和应用等量关系列方程。

苏教版五下《方程》教学设计 篇13

  教学目标:

  1、结合具体情境,了解方程的含义。

  2、会用方程表示简单情境中的等量关系。

  3、在列方程的过程中,发展抽象概括能力。

  教学重难点:

  了解方程的意义。会用方程表示简单情境中的等量关系。

  教材分析:

  为了使学生体会方程是刻画现实世界的一个有效的数学模型,产生学习方程的欲望,教材设置了多方面的问题情境。

  教学设计:

  一、创设情境,了解方程的含义

  1、出示88页的天平图

  师:你从图中看到了什么?

  天平的左边有一个药丸和5克砝码,右边有10课砝码,天平的指针在中间,说明天平平衡。

  师:天平平衡说明了什么?

  天平两边的质量相等。

  师:如果用x表示药丸的质量,你能根据天平平衡写出一个等式吗?每人在纸上写一写,试一试。

  学生汇报

  师:x+5表示什么意思?10表示什么意思?=表示什么意思?

  2、出示92页的月饼图

  师:你从图中看到了什么?

  师:你能不能写一个等式吗?

  同桌讨论

  一生汇报

  生:每块月饼的质量×4=400克。

  师:如果用x表示每块月饼的质量,你能写一个等式吗?每人在纸上写一写。

  学生汇报:4x=400

  3、出示88页水壶图的左半幅

  师:你从图中看到了什么?根据这幅图,你能不能说出一个等式呢?(同桌互相说)

  一生汇报。

  师:如果每个热水瓶能进x毫升的水,你能用字母表示这个等式吗?每人在纸上写一写。

  生汇报

  2x+200=20xx;

  2x=20xx-200

  师:请同学们观察我们列的几个算式,它们有什么共同点?与同学交流。

  师:像上面这些含有未知数的等式叫方程。

  谁能说一说方程有什么特点?

  二、拓展应用:会用方程表示简单情境中的等量关系。

  同学们已经认识了方程,那么怎么列方程那?

  1、第93页第1题

  看图列方程

  你是怎么想的?

  2、第89页第2题

  根据题意列方程

  第二题对于学生来说有一定的难度,需要教师引导学生做。

  3、第89页第3题

  可以先引导学生找出日历中尽可能多的规律,并尝试用字母表示出来,在讨论书上的问题。

  三、总结

  今天这节课我们学了什么内容,你学到了什么,还有哪些疑问?教学反思:学生通过天平了解了方程的含义,学会了用方程表示简单情境中的数量关系,在列方程的过程中,发展了学生的抽象概括能力。

苏教版五下《方程》教学设计 篇14

  第一课时 教学内容:教科书第1~2页,例1、例2、试一试、练一练,练习一第1~3题。 教学目标: 1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。 2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。 教学重点:理解等式的性质,理解方程的意义。 教学难点:利用等式性质和方程的意义列出方程。 教学准备:多媒体课件 教学过程: 一、情景引入 1、出示天平。 知道这是什么吗?你知道它是按照什么原理制造的吗? 说说你的想法。 如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢? 二、教学新课 1、教学例1。 (1)出示例1图。 你会用等式表示天平两边物体的质量关系吗?把它写出来。 50+50=100 (板书) 说说你是怎样想的? (2)指出等式的左边,等式的右边等概念。 等式有什么特征?(等式的左边和右边结果相等;等式用等号连接) 能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式) 2、教学例2。 (1)出示例2图。 天平往哪一边下垂说明什么?(哪一边物体的质量多) 你能用式子表示天平两边物体的质量关系吗? 学生独立完成填写,集体汇报。 板书:x+50>100 x+50=150 x+50<200 x+x=200 如果让你把这四个式子分类,应分为几类?为什么? 指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数) 知道像x+50=100,x+x=100这样的等式叫什么吗?(方程) 说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式) (2)讨论:等式与方程有什么关系? 小组讨论。 指出:方程一定是等式,但等式不一定是方程。

  方程是特殊的等式。他们的关系可以用集合圈表示。

  3、教学“试一试”。 独立完成,完成后汇报方法。 让学生说一说,每题中的方程哪个更简洁一些? 指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。 4、完成“练一练。 (1)完成第1题。 独立完成判断后说说想法。 (2)完成第2题。 (3)完成第3题。 交流所列方程,说说你为什么这样列?你是怎么想的? 三、巩固练习 1、完成练习一第1题。 能说说每个线段表示的意思吗?方程怎样列呢? 小组中交流列式。 2、完成练习一第2题。 理解题意,说说数量关系是怎样的? 列出方程并交流。 3、完成练习一第3题。 四、课堂总结 通过学习,你有哪些收获? 板书设计: 方程 50+50=100 x+50>100 x+50=150

  等式 方程 x+50<200 x+x=200

221381
领取福利

微信扫码领取福利

苏教版五下《方程》教学设计(通用14篇)

微信扫码分享