欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 一元二次方程教案4

一元二次方程教案4

网友 分享 时间: 加入收藏 我要投稿 点赞

一元二次方程教案4

文章来源自学科网    教学内容
    一元二次方程概念及一元二次方程一般式及有关概念.
    教学目标
    了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.
    1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
    2.一元二次方程的一般形式及其有关概念.
    3.解决一些概念性的题目.
    4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
    重难点关键
    1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
    2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
    教学过程
    一、复习引入     学生活动:列方程.
    问题(1)古算趣题:"执竿进屋"
    笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
    有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
    借问竿长多少数,谁人算出我佩服。
    如果假设门的高为x尺,那么,这个门的宽为_______尺,长为_______尺,
    根据题意,得________.
    整理、化简,得:__________.
    问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.
    如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.
    整理得:_________.
    问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
    如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
    整理,得:________.
    老师点评并分析如何建立一元二次方程的数学模型,并整理.
    二、探索新知
    学生活动:请口答下面问题.
    (1)上面三个方程整理后含有几个未知数?
    (2)按照整式中的多项式的规定,它们最高次数是几次?
    (3)有等号吗?还是与多项式一样只有式子?
    老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
    因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
    一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
    一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
    例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
    分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.
    解:略
    注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.
    例2.(学生活动:请二至三位同学上台演练)  将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
    分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
    解:略
    三、巩固练习
    教材P32  练习1、2
    补充练习:判断下列方程是否为一元二次方程?
    (1)3x+2=5y-3  (2) x2=4  (3) 3x2- =0 (4) x2-4=(x+2) 2   (5) ax2+bx+c=0
    四、应用拓展
    例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
    分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
    证明:m2-8m+17=(m-4)2+1
    ∵(m-4)2≥0
    ∴(m

-4)2+1>0,即(m-4)2+1≠0
    ∴不论m取何值,该方程都是一元二次方程.
    o 练习: 1.方程(2a-4)x2-2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
    2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程
    五、归纳小结(学生总结,老师点评)
    本节课要掌握:
    (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
    六、布置作业
    1.教材P34 习题22.1  1(2)(4)(6)、2.
    2.选用作业设计.补充:若x2-2xm-1+3=0是关于x的一元二次方程,求m的值
    作业设计
    一、选择题
    1.在下列方程中,一元二次方程的个数是(  ).
    ①3x2+7=0    ②ax2+bx+c=0    ③(x-2)(x+5)=x2-1    ④3x2- =0
    A.1个    B.2个    C.3个    D.4个

    2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ).
    A.2,3,-6    B.2,-3,18    C.2,-3,6     D.2,3,6
    3.px2-3x+p2-q=0是关于x的一元二次方程,则(  ).
    A.p=1     B.p>0     C.p≠0     D.p为任意实数
 &nb

文章来源自学科网

一元二次方程教案4

文章来源自学科网sp;  二、填空题
    1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.
    2.一元二次方程的一般形式是__________.
    3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.
    三、综合提高题
    1.a满足什么条件时,关于x的方程a(x2+x)= x-(x+1)是一元二次方程?
    2.关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么?
    3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,是这样做的:
    设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:
    第一步:
    x 1 2 3 4
    x2-3x-1 -3 -3  
    所以,________<x<__________
    第二步:
    x 3.1 3.2 3.3 3.4
    x2-3x-1 -0.96 -0.36  
    所以,________<x<__________
    (1)请你帮小明填完空格,完成他未完成的部分;
    (2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______

文章来源自学科网

221381
领取福利

微信扫码领取福利

一元二次方程教案4

微信扫码分享