第1节 描述圆周运动
【学习目标】
1.根据实例归纳圆周运动的运动学特点,知道它是一种特殊的曲线运动,知道它与一般曲线运动的关系。
2.理解表征圆周运动的物理量,利用各物理量的定义式,阐述各物理量的含义及相互关系。
3.知道圆周运动在实际应用中的普遍性。用半径、线速度、角速度的关系揭示生活、生产中的圆周运动实例。从而对圆周运动的规律有更深刻的领悟。
【阅读指导】
1.圆周运动是____________的一种,从地上物体的运动到各类天体的运动,处处体现着圆周运动或椭圆运动的和谐之美。物体的___________________的运动叫做圆周运动。
2.在课本图2-1-1中,从运动学的角度看有什么共同的特点:_____________________ ________________________________________________________________。
3.在圆周运动中,最简单的一种是______________________。
4.如果质点沿圆周运动,在_____________________________,这种运动就叫做匀速圆周运动。
5.若在时间t内,做匀速圆周运动的质点通过的弧长是s,则可以用比值________来描述匀速圆周运动的快慢,这个比值代表___________________________,称为匀速圆周运动的_____________。
6.匀速圆周运动是一种特殊的曲线运动,它的线速度就是________________。这是一个________量,不仅有大小,而且有方向。圆周运动中任一点的线速度方向就是_______________。因此,匀速圆周运动实际是一种__________运动。这里所说的“匀速”是指________________的意思。
7.对于做匀速圆周运动的质点,______________________________的比值,即单位时间内所转过的角度叫做匀速圆周运动的_________________,表达式是____________,单位是_____________,符号是________;匀速圆周运动是_______________不变的运动。
8.做匀速圆周运动的物体__________________________叫做周期,用符号____表示。周期是描述________________的一个物理量。做匀速圆周运动的物体,经过一个周期后会_____________________。
9.在匀速圆周运动中,线速度与角速度的关系是_______________________。
10.任何一条光滑的曲线,都可以看做是由___________________组成的,__________叫做曲率半径,记作_____,因此我们就可以把物体沿任意曲线的运动,看成是__________
______________的运动。
【课堂练习】
★夯实基础
1.对于做匀速圆周运动的物体,下列说法中正确的是( )
A.相等的时间内通过的路程相等
B.相等的时间内通过的弧长相等
C.相等的时间内通过的位移相等
D.相等的时间内通过的角度相等
2.做匀速圆周运动的物体,下列哪些物理量是不变的( )
A.速率 B.速度 C.角速度 D.周期
3.某质点绕圆周运动一周,下述说法正确的是( )
A.质点相对于圆心是静止的 B.速度的方向始终不变
C.位移为零,但路程不为零 D.路程与位移的大小相等
4.做匀速圆周运动的物体,其线速度大小为3m/s,角速度为6 rad/s,则在0.1s内物体通过的弧长为________m,半径转过的角度为_______rad,半径是_______m。
5.A、B两质点分别做匀速圆周运动,在相同的时间内,它们通过的弧长之比sA:sB=2:3,而转过的角度之比 =3:2,则它们的周期之比TA:TB=________,角速度之比 =________,线速度之比vA:vB=________,半径之比RA:RB=________。
6.如图所示的传动装置中,已知大轮A的半径是小轮B半径的3倍,A、B分别在边缘接触,形成摩擦转动,接触点无打滑现象,B为主动轮,B转动时边缘的线速度为v,角速度为ω,试求:
(1)两轮转动周期之比;
(2)A轮边缘的线速度;
(3)A轮的角速度。
★能力提升
7.如图所示,直径为d的圆筒,正以角速度ω绕轴O匀速转动,现使枪口对准圆筒,使子弹沿直径穿过,若子弹在圆筒旋转不到半圈时,筒上先后留下a、b两弹孔,已知aO与bO夹角60°,则子弹的速度为多大?
8.一个大钟的秒针长20cm,针尖的线速度是________m/s,分针与秒针从重合至第二次重合,中间经历的时间为________s。
第1节 描述圆周运动
【阅读指导】
1. 曲线运动,运动轨迹是圆的。
2. 做圆周运动的物体通常不能看作质点;物体各部分的轨迹都不尽相同,但它们是若干做圆周运动的质点的组合;做圆周运动的各部分的轨迹可能不同,但轨迹的圆心相同。
3.快慢不变的匀速(率)圆周运动。
4.相等的时间里通过的圆弧长度相等。
5.S/t,单位时间所通过的弧长,线速度。
6.质点在圆周运动中的瞬时速度,矢,圆周上该点切线的方向,变速,速率不变的。
7.连接质点和圆心的半径所转过的角度,角速度,ω=φ/t,弧度每秒,rad/s,角速度。
8.运动一周所用的时间,T,匀速圆周运动快慢,重复回到原来的位置及运动方向。
9. V=Rω。
10.一系列不同半径的圆弧,这些圆弧的半径;ρ;物体沿一系列不同半径的小段圆弧。
【课堂练习】
1. A 2. A、C、D 3. C 4. 0.3,0.6,0.5.5. 1:2,2:1,1:4。
6.小。7. V=3dω/2π
【学习目标】
1.根据实例归纳圆周运动的运动学特点,知道它是一种特殊的曲线运动,知道它与一般曲线运动的关系。
2.理解表征圆周运动的物理量,利用各物理量的定义式,阐述各物理量的含义及相互关系。
3.知道圆周运动在实际应用中的普遍性。用半径、线速度、角速度的关系揭示生活、生产中的圆周运动实例。从而对圆周运动的规律有更深刻的领悟。
【阅读指导】
1.圆周运动是____________的一种,从地上物体的运动到各类天体的运动,处处体现着圆周运动或椭圆运动的和谐之美。物体的___________________的运动叫做圆周运动。
2.在课本图2-1-1中,从运动学的角度看有什么共同的特点:_____________________ ________________________________________________________________。
3.在圆周运动中,最简单的一种是______________________。
4.如果质点沿圆周运动,在_____________________________,这种运动就叫做匀速圆周运动。
5.若在时间t内,做匀速圆周运动的质点通过的弧长是s,则可以用比值________来描述匀速圆周运动的快慢,这个比值代表___________________________,称为匀速圆周运动的_____________。
6.匀速圆周运动是一种特殊的曲线运动,它的线速度就是________________。这是一个________量,不仅有大小,而且有方向。圆周运动中任一点的线速度方向就是_______________。因此,匀速圆周运动实际是一种__________运动。这里所说的“匀速”是指________________的意思。
7.对于做匀速圆周运动的质点,______________________________的比值,即单位时间内所转过的角度叫做匀速圆周运动的_________________,表达式是____________,单位是_____________,符号是________;匀速圆周运动是_______________不变的运动。
8.做匀速圆周运动的物体__________________________叫做周期,用符号____表示。周期是描述________________的一个物理量。做匀速圆周运动的物体,经过一个周期后会_____________________。
9.在匀速圆周运动中,线速度与角速度的关系是_______________________。
10.任何一条光滑的曲线,都可以看做是由___________________组成的,__________叫做曲率半径,记作_____,因此我们就可以把物体沿任意曲线的运动,看成是__________
______________的运动。
【课堂练习】
★夯实基础
1.对于做匀速圆周运动的物体,下列说法中正确的是( )
A.相等的时间内通过的路程相等
B.相等的时间内通过的弧长相等
C.相等的时间内通过的位移相等
D.相等的时间内通过的角度相等
2.做匀速圆周运动的物体,下列哪些物理量是不变的( )
A.速率 B.速度 C.角速度 D.周期
3.某质点绕圆周运动一周,下述说法正确的是( )
A.质点相对于圆心是静止的 B.速度的方向始终不变
C.位移为零,但路程不为零 D.路程与位移的大小相等
4.做匀速圆周运动的物体,其线速度大小为3m/s,角速度为6 rad/s,则在0.1s内物体通过的弧长为________m,半径转过的角度为_______rad,半径是_______m。
5.A、B两质点分别做匀速圆周运动,在相同的时间内,它们通过的弧长之比sA:sB=2:3,而转过的角度之比 =3:2,则它们的周期之比TA:TB=________,角速度之比 =________,线速度之比vA:vB=________,半径之比RA:RB=________。
6.如图所示的传动装置中,已知大轮A的半径是小轮B半径的3倍,A、B分别在边缘接触,形成摩擦转动,接触点无打滑现象,B为主动轮,B转动时边缘的线速度为v,角速度为ω,试求:
(1)两轮转动周期之比;
(2)A轮边缘的线速度;
(3)A轮的角速度。
★能力提升
7.如图所示,直径为d的圆筒,正以角速度ω绕轴O匀速转动,现使枪口对准圆筒,使子弹沿直径穿过,若子弹在圆筒旋转不到半圈时,筒上先后留下a、b两弹孔,已知aO与bO夹角60°,则子弹的速度为多大?
8.一个大钟的秒针长20cm,针尖的线速度是________m/s,分针与秒针从重合至第二次重合,中间经历的时间为________s。
第1节 描述圆周运动
【阅读指导】
1. 曲线运动,运动轨迹是圆的。
2. 做圆周运动的物体通常不能看作质点;物体各部分的轨迹都不尽相同,但它们是若干做圆周运动的质点的组合;做圆周运动的各部分的轨迹可能不同,但轨迹的圆心相同。
3.快慢不变的匀速(率)圆周运动。
4.相等的时间里通过的圆弧长度相等。
5.S/t,单位时间所通过的弧长,线速度。
6.质点在圆周运动中的瞬时速度,矢,圆周上该点切线的方向,变速,速率不变的。
7.连接质点和圆心的半径所转过的角度,角速度,ω=φ/t,弧度每秒,rad/s,角速度。
8.运动一周所用的时间,T,匀速圆周运动快慢,重复回到原来的位置及运动方向。
9. V=Rω。
10.一系列不同半径的圆弧,这些圆弧的半径;ρ;物体沿一系列不同半径的小段圆弧。
【课堂练习】
1. A 2. A、C、D 3. C 4. 0.3,0.6,0.5.5. 1:2,2:1,1:4。
6.小。7. V=3dω/2π