欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 空间角的计算学案练习题

空间角的计算学案练习题

网友 分享 时间: 加入收藏 我要投稿 点赞 8
0
§空间角的计算(一)

一、知识要点
1.用向量方法解决线线所成角;
2.用向量方法解决线面所成角。
二、典型例题
例1.如图,在正方体 中,点 分别在 , 上,且 , ,求 与 所成角的余弦值。



例2.在正方体 中, 是 的中点,点 在 上,且 ,求直线 与平面 所成角余弦值的大小。


三、巩固练习
1.设 分别是两条异面直线 的方向向量,且 ,则异面直线 与 所成角大小为 ;
2. 在正方体 , 与平面 所成角的大小为 , 与平面 所成角大小为 , 与平面 所成角的大小为 ;
3.平面的一条斜线和它在平面内的射影得夹角45°,平面内一条直线和这条斜线在平面内的射影夹角为45°,则斜线与平面内这条直线所成角为 ;

四、小结

五、作业
1.平面的一条斜线和这个平面所成角的范围为 ,两条异面直线所成角的范围为 ;
2.已知 为两条异面直线, ,分别是它们的方向向量,则 与 所成角为 ;
3.已知向量 是直线 的方向向量 是平面 的法向量,则直线 与平面 所成角为 ;
4.正方体 中,O为侧面 的中心,则 与平面 所成角的正弦值为 ;
5.长方体 中, ,点 是线段 的中点,则 与平面 所成角为 ;
6.已知平面 相交于 , ,则直线 与平面 所成角的余弦值为 ;
7.如图, 内接于 的直径, 为 的直径, 且 , 为 中点,求异面直线 与 所成角的余弦值。



8.如图,正三棱柱 的底面边长为 ,侧棱长为 。
求 与侧面 所成角大小。

221381
领取福利

微信扫码领取福利

空间角的计算学案练习题

微信扫码分享

月会员
每天200次下载
2元/30天
直接下载
单次下载
0.1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭