j.Co M
第一章(第1课时) 1.1 具有意义相反的量
教学目标:
1数学中引入正负数来表示"具有意义相反的量"的必要性和合理性,能运用正数和负数表示生活中具有相反意义的量;
2理解有理数的意义,有理数应用的广泛性。
教学过程
一 激情引趣,导入新课
猜猜看:
1 2007年1月27日,中央电视台新闻联播后关于城市天气预报,播音员说:"北京,晴,零下3度到5度",你猜,屏幕上显示的是什么?
2世界上最高峰---珠穆朗玛峰高出海平面8844.43米,吐鲁番盆地低于海平面155米,你猜中国地图册上这两个地方标出的数字分别是什么?
3 我这儿有一张存折,你猜银行是怎么区分存款和取款的?(投影存折)
二 合作交流,探究新知
1 讨论上面提出的问题
2意义相反的量
(1) 上面四个问题中, "零上与零下"、"高出于低于"、"存款与取款"都是意义相反的量,在生活中你还见过意义相反的量吗?
(2)温馨提示:意义相反的量,有两点值得注意,一是有两个量,所谓量,就得带上单位二是意义相反。如:向东走10米,和运进20吨就不是意义相反的量。
考考你:
在下列横线上填上适当的文字,使其前后构成意义相反的量。
(1)收入1000元,______200元,(2) 上升20米,______25米;
3 正数和负数
(1)怎样用数来表示意义相反的量?
一对意义相反的量,一个用正数表示,另一个用负数表示。
温馨提示:①小学学过的除0外的自然数和分数都是正数数。② 负数就是正数前面加上"-",有时候为了强调正数,也在正数前面加上"+",如银行表示存款。但一般是省略了的。
(3)"零"是负数吗?"零"有什么作用?
4 正数和负数,零和负数大小的比较
想一想:
1 某地2月18日凌晨一点的温度是0°C凌晨4点的温度是-2°C,哪个时刻温度低?
2珠穆朗玛峰海平面高度为8844.43米,吐鲁番盆地海平面高度为-155米,海平面高度为0米,哪个地方低?
你能否从这两个例子受到启发,比较正数和零,负数和零,正数和负数的大小。
正数____0, 负数____0 正数_____负数
5 有理数的概念
(1)小学你学过哪些数?现在你又学到了什么数?
(2)对我们已经学过的数怎样分类?
①按"整分性"分
正整数、零、负整数统称为____,正分数、负分数统称为____,整数和分数统称为______
②按正负性分
正有理数包括______和______,负有理数包括______和_______.
请填写下表:
温馨提示:(1)正数和零称为_____,(2)负数和零称为______,(3) 如果把整数看作分母是1的分数,这时分数就包含了整数,如果没有特别的说明,分数是指分母不等于1的分数。
(4)所有的整数集合在一起,组成了整数集,所有的有理数集合在一起就组成了有理数集。
三 应用迁移,拓展提高。
1相反意义的量
例1 判断下列各题是否是相反意义的量,(1) 上升和下降(2) 运进货物100吨和下降100米,(3)向东走10米与向西走1米
2表示相反意义的量
例2 (1) 收入10万元,记作:+10万元,支出1000元记作______.
(2) 水位升高1.2米,记作+1.2米,那么-3.0米表示_________.
3有理数的概念
例3 下列说法正确的是( )
A 正数、零、负数统称为有理数。 B 分数、整数统称为有理数。
C 正有理数、负有理数统称为有理数。D 以上都不对
例4 已知:1,、 、0,-37、0.2, ,-0.01,-20%, , ,其中整数有___________________,
负分数有__________________.
4实践应用
例5 北京与巴黎两地时差是-7(带正号的数表示同一时刻比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是_________
四 课堂练习,巩固提高
P 6 练习题1,2
五 知识小结,巩固升华
1 什么样的量才是意义相反的量?
2 意义相反的量怎样表示?
3 什么叫有理数?有理数怎样分类?
作业:P 6-7
第一章(第1课时) 1.1 具有意义相反的量
教学目标:
1数学中引入正负数来表示"具有意义相反的量"的必要性和合理性,能运用正数和负数表示生活中具有相反意义的量;
2理解有理数的意义,有理数应用的广泛性。
教学过程
一 激情引趣,导入新课
猜猜看:
1 2007年1月27日,中央电视台新闻联播后关于城市天气预报,播音员说:"北京,晴,零下3度到5度",你猜,屏幕上显示的是什么?
2世界上最高峰---珠穆朗玛峰高出海平面8844.43米,吐鲁番盆地低于海平面155米,你猜中国地图册上这两个地方标出的数字分别是什么?
3 我这儿有一张存折,你猜银行是怎么区分存款和取款的?(投影存折)
二 合作交流,探究新知
1 讨论上面提出的问题
2意义相反的量
(1) 上面四个问题中, "零上与零下"、"高出于低于"、"存款与取款"都是意义相反的量,在生活中你还见过意义相反的量吗?
(2)温馨提示:意义相反的量,有两点值得注意,一是有两个量,所谓量,就得带上单位二是意义相反。如:向东走10米,和运进20吨就不是意义相反的量。
考考你:
在下列横线上填上适当的文字,使其前后构成意义相反的量。
(1)收入1000元,______200元,(2) 上升20米,______25米;
3 正数和负数
(1)怎样用数来表示意义相反的量?
一对意义相反的量,一个用正数表示,另一个用负数表示。
温馨提示:①小学学过的除0外的自然数和分数都是正数数。② 负数就是正数前面加上"-",有时候为了强调正数,也在正数前面加上"+",如银行表示存款。但一般是省略了的。
(3)"零"是负数吗?"零"有什么作用?
4 正数和负数,零和负数大小的比较
想一想:
1 某地2月18日凌晨一点的温度是0°C凌晨4点的温度是-2°C,哪个时刻温度低?
2珠穆朗玛峰海平面高度为8844.43米,吐鲁番盆地海平面高度为-155米,海平面高度为0米,哪个地方低?
你能否从这两个例子受到启发,比较正数和零,负数和零,正数和负数的大小。
正数____0, 负数____0 正数_____负数
5 有理数的概念
(1)小学你学过哪些数?现在你又学到了什么数?
(2)对我们已经学过的数怎样分类?
①按"整分性"分
正整数、零、负整数统称为____,正分数、负分数统称为____,整数和分数统称为______
②按正负性分
正有理数包括______和______,负有理数包括______和_______.
请填写下表:
温馨提示:(1)正数和零称为_____,(2)负数和零称为______,(3) 如果把整数看作分母是1的分数,这时分数就包含了整数,如果没有特别的说明,分数是指分母不等于1的分数。
(4)所有的整数集合在一起,组成了整数集,所有的有理数集合在一起就组成了有理数集。
三 应用迁移,拓展提高。
1相反意义的量
例1 判断下列各题是否是相反意义的量,(1) 上升和下降(2) 运进货物100吨和下降100米,(3)向东走10米与向西走1米
2表示相反意义的量
例2 (1) 收入10万元,记作:+10万元,支出1000元记作______.
(2) 水位升高1.2米,记作+1.2米,那么-3.0米表示_________.
3有理数的概念
例3 下列说法正确的是( )
A 正数、零、负数统称为有理数。 B 分数、整数统称为有理数。
C 正有理数、负有理数统称为有理数。D 以上都不对
例4 已知:1,、 、0,-37、0.2, ,-0.01,-20%, , ,其中整数有___________________,
负分数有__________________.
4实践应用
例5 北京与巴黎两地时差是-7(带正号的数表示同一时刻比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是_________
四 课堂练习,巩固提高
P 6 练习题1,2
五 知识小结,巩固升华
1 什么样的量才是意义相反的量?
2 意义相反的量怎样表示?
3 什么叫有理数?有理数怎样分类?
作业:P 6-7