欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 圆的标准方程(通用13篇)

圆的标准方程(通用13篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

圆的标准方程(通用13篇)

圆的标准方程 篇1

  1、教学目标

  (1)知识目标:

  1、在平面直角坐标系中,探索并掌握圆的标准方程;

  2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;

  3、利用圆的方程解决与圆有关的实际问题.

  (2)能力目标:

  1、进一步培养学生用解析法研究几何问题的能力;

  2、使学生加深对数形结合思想和待定系数法的理解;

  3、增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2、教学重点、难点

  1)教学重点: 圆的标准方程的求法及其应用.

  2)教学难点:①会根据不同的已知条件,利用待定系数法求圆的标准方程

  ②选择恰当的坐标系解决与圆有关的实际问题.

  3、教学过程

  (一)创设情境(启迪思维)

  问题一:

  已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导]:画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)

  将x=2.7代入,得 

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:

  1根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  答:x2+y2=r2

  2如果圆心在,半径为时又如何呢?

  [学生活动]:探究圆的方程。

  [教师预设]:方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为      ①

  把①式两边平方,得(xa)2+(yb)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在,半径为

  (3)经过点,圆心在点

  2根据圆的方程写出圆心和半径

  (1)  (2)

  ii.灵活应用(提升能力)

  问题四:1求以为圆心,并且和直线相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2求过点,圆心在直线上且与轴相切的圆的方程.

  [教师引导]应用待定系数法寻找圆心和半径.

  3已知圆的方程为,求过圆上一点的切线方程.

  [学生活动]探究方法

  [教师预设] [多媒体课件演示]

  方法一:待定系数法(利用几何关系求斜率―垂直)

  方法二:待定系数法(利用代数关系求斜率―联立方程)          

  方法三:轨迹法(利用勾股定理列关系式)             

  方法四:轨迹法(利用向量垂直列关系式)

  4你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是:

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3、求过点,且圆心在直线上的圆的标准方程.

  4求圆x2+y2=13过点p(-2,3)的切线方程.

  5已知圆的方程为,求过点的切线方程.

  (五)小结反思(拓展引申)

  1、课堂小结:

  1)知识性小结:

  ①圆心为c(a,b),半径为r 的圆的标准方程为:

  当圆心在原点时,圆的标准方程为:

  ②已知圆的方程是,经过圆上一点的切线的方程是:

  2)方法性小结:

  ①求圆的方程的方法:i.找出圆心和半径;ii.待定系数法

  ②求解应用问题的一般方法

  2、分层作业:(a)巩固型作业:课本p81-82:(习题7.6)1、2、4

  (b)思维拓展型作业:

  试推导过圆上一点的切线方程.

  3、激发新疑:

  问题七:1、把圆的标准方程展开后是什么形式?

  2方程:的曲线是什么图形?

  设计说明

  圆是学生比较熟悉的曲线.初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点就放在了用解析法研究它的方程和圆的标准方程的一些应用上.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由潜入深的解决问题,并通过最终在实际问题中的应用,增强学生用数学的意识.另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.

  本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、我的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想,应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时提锻炼了思维、提高了能力、培养了兴趣、增强了信心。

圆的标准方程 篇2

  教学目标

  (一)知识目标

  1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;

  2.理解并掌握切线方程的探求过程和方法。

  (二)能力目标

  1.进一步培养学生用坐标法研究几何问题的能力;

  2. 通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力;

  3. 通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。

  (三)情感目标

  通过运用圆的知识解决实际问题的学习,理解理论来源于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。

  教学重、难点

  (一)教学重点

  圆的标准方程的理解、掌握。

  (二)教学难点

  圆的标准方程的应用。

  教学方法

  选用引导探究式的教学方法。

  教学手段

  借助多媒体进行辅助教学。

  教学过程

  .复习提问、引入课题

  师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学们考虑:如何求适合某种条件的点的轨迹?

  生:①建立适当的直角坐标系,设曲线上任一点m的坐标为(x,y);②写出适合某种条件p的点m的集合p={m p(m)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示]

  师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。[给出标题]

  师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25.

  若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程?

  生:x2+y2=r2.

  师:你是怎样得到的?(引导启发)圆上的点满足什么条件?

  生:圆上的任一点到圆心的距离等于半径。即 ,亦即 x2+y2=r2.

  师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至c(a,b)点(如图),方程又是怎样的?

  生:此圆是到点c(a,b)的距离等于半径r的点的集合,

  由两点间的距离公式得                           

  即:(x-a)2+(y-b)2= r2

  .讲授新课、尝试练习

  师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程. 

  特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.

  师:圆的标准方程由哪些量决定?

  生:由圆心坐标(a,b)及半径r决定。

  师:很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。

  1、     写出下列各圆的标准方程:[多媒体演示]

  ① 圆心在原点,半径是3   :________________________

  ② 圆心在点c(3,4),半径是 :______________________

  ③ 经过点p(5,1),圆心在点c(8,-3):_______________________

  2、  变式题[多媒体演示]

  ①     求以c(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。

  答案:(x-1)2 + (y-3)2 =

  ② 已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。  

  答案: c(a,0),  r=|a|

  .例题分析、巩固应用

  师:下面我们通过例题来看看圆的标准方程的应用.

  [例1]            已知圆的方程是 x2+y2=17,求经过圆上一点p(,)的切线的方程。

  师:你打算怎样求过p点的切线方程?

  生:要求经过一点的直线方程,可利用直线的点斜式来求。

  师: 斜率怎样求?

  生:。。。。。。

  师:已知条件有哪些?能利用吗?不妨结合图形来看看(如图)

  生:切线与过切点的半径垂直,故斜率互为负倒数

  半径op的斜率 k1=, 所以切线的斜率 k=-=-

  所以所求切线方程:y-= -(x-)

  即:x+y=17   (教师板书)

  师:对照圆的方程x2+y2=17和经过点p(,)的切线方程x+y=17,你能作出怎样的猜想?

  生:。。。。。。

  师:由x2+y2=17怎样写出切线方程x+y=17,与已知点p(,)有何关系?

  (若看不出来,再看一例)

  [例1/]  圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。

  答案:2x+3y=13  即:2x+3y-13=0

  师:发现规律了吗?(学生纷纷举手回答)

  生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。

  师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!

  生:xox+yoy=r2.

  师:这个猜想对不对?若对,可否给出证明?

  生:。。。。。。

  [例2]已知圆的方程是 x2+y2=r2,求经过圆上一点p(xo,yo)的切线的方程。

  解:如图(上一页),因为切线与过切点的半径垂直,故半径op的斜率与切线的斜率互为负倒数

  ∵半径op的斜率 k1=,∴切线的斜率 k=-=-

  ∴所求切线方程:y-yo= - (x-xo)

  即:xox+yoy=xo2+yo2   亦即:xox+yoy=r2. (教师板书)

  当点p在坐标轴上时,可以验证上面方程同样适用。

  归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程

  [例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱a2p2的长度。(精确到0.01m)

  引导学生分析,共同完成解答。

  师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求a2p2的长度。

  解:以ab所在直线为x轴,o为坐标原点,建立如图所示的坐标系。则圆心在y轴上,设为

  (0,b),半径为r,那么圆的方程是   x2+(y-b)2=r2.

  ∵p(0,4),b(10,0)都在圆上,于是得到方程组:

  解得:b=-10.5 ,r2=14.52

  ∴圆的方程为 x2+(y+10.5)2=14.52.

  将p2的横坐标x=-2代入圆的标准方程

  且取y>0

  得:y=

  ≈14.36-10.5=3.86 (m)

  答:支柱a2p2的长度约为3.86m。

  .课堂练习、课时小结

  课本p77练习2,3

  师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

  .问题延伸、课后作业

  (一)若p(xo,yo)在圆(x-a)2+(y-b)2= r2上时,求过p点的圆的切线方程。

  课本p81习题7.7 : 1,2,3,4

  (二)预习课本p77~p79

  教学设计说明

  设计思想:

  在教学过程中,教师遵循数学发展规律,并依据建构主义教育理论,创设一系列数学实验环境,在情境中让学生观察、类比、猜想、尝试、探索、归纳并引导加以证明,强调主动建构,从深层次加强学生对知识的感知度,使学生能更好地理解和掌握圆的标准方程。

  设计理念:

  设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。

  设计思路:

  本节课的设计与教材的呈现方式有所不同,教材只是教学的蓝本,教师在理解教材编写意图的基础上,应发挥主观能动作用,对教材资源进行再加工、再创造,这样教学有利于认知结构与知识结构的有机结合,也有利于学生从深层次理解和掌握圆的标准方程。鉴于此,本节在给出圆的标准方程的过程中,运用简单、特殊的到复杂、一般的数学思想,使用了观察、猜测、经验归纳等方法进行合情地推理,同时引导学生对照圆的几何形状,观察和欣赏圆的方程,体会数学中的美――对称、简洁。圆的标准方程的应用是本节的难点。为了突破难点,设计三个例题。第一、二个例题,从特殊到一般给出切线方程,培养学生探究问题的兴趣,不断完善自己的认知结构。第三个例题,充分利用多媒体的动感演示,刺激学生的感官,引起更强的注意,从而使学生理解理论来源于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,增强应用意识;同时培养学生勇于探索、坚忍不拔的意志品质。最后设计了“问题延伸”,让学生带着问题走进课堂,又带着问题走出课堂,激发学生不断求知、不断探索的欲望。

  在整个教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来,教师的每项措施都是为了力求给学生创造一种思维情境,一种动手、动脑、动口并且主动参与学习的机会,激发学生求知的欲望,促使学生掌握知识,解决问题。

  媒体设计:

  采用powerpoint媒体。本节知识容量大,同时又有图形。为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。同时动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

圆的标准方程 篇3

  一、教材分析本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。二、教学目标 1、  知识目标:使学生掌握并依据不同条件求得圆的方程。2、  能力目标:(1)使学生初步熟悉的用途和用法。(2)体会数形结合思想,形成代数方法处理几何问题能力(3)培养学生观察、比较、分析、概括的思维能力。三、重点、难点、疑点及解决办法1、重点:的推导过程和特点的明确。2、难点:圆的方程的应用。3、解决办法              充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉的用途和用法。四、学法在课前必须先做好充分的预习,让学生带着疑问听课,以提高听课效率。采取学生共同探究问题的学习方法,五、教法先让学生带着问题预习课文,对圆的方程有个初步的认识,在教学过程 中,主要采用启发性原则,发挥学生的思维能力、空间想象能力。在教学中,还不时补充练习题,以巩固学生对新知识的理解,并紧紧与考试相结合。六、教学步骤 一、导入  新课                     首先让学生回顾上一章的直线的方程是怎么样求出的。              二、讲授新课1、新知识学习在学生回顾确定直线的要素――两点(或者一点和斜率)确定一条直线的基础上,回顾确定圆的几何要素――圆心位置与半径大小,即圆是这样的一个点的集合在平面直角坐标系中,圆心 可以用坐标 表示出来,半径长 是圆上任意一点与圆心的距离,根据两点间的距离公式,得到圆上任意一点 的坐标 满足的关系式。经过化简,得到                     2、知识巩固                            学生口答下面问题                            1、求下列各。①     圆心坐标为(-4,-3)半径长度为6;②     圆心坐标为(2,5)半径长度为3;2、求下列各圆的圆心坐标和半径。       ①        ② 3、知识的延伸根据“曲线与方程”的意义可知,坐标满足方程的点在曲线上,坐标不满足方程的点不在曲线上,为了使学生体验曲线和方程的思想,加深对的理解,教科书配置了例1。例1要求首先根据坐标与半径大小写出,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程――从几何到代数;根据坐标满足方程来看在不在圆上――从代数到几何。三、知识的运用       例2给出不在同一直线上的三点,可以画出一个三角形,三角形有唯一的外接圆,因此可以求出他的标准方程。由于含有三个参数 , ,因此必须具备三个独立条件才能确定一个圆。引导学生找出求三个参数的方法,让学生初步体验用“待定系数法”求曲线方程这一数学方法的使用过程 四、小结一、知识概括1、                     圆心为 ,半径长度为 的为 2、                     判断给出一个点,这个点与圆什么关系。3、                   怎样建立一个坐标系,然后求出。二、思想方法(1)建立平面直角坐标系,将曲线用方程来表示,然后用方程来研究曲线的性质,这是解析几何研究平面图形的基本思路,本节课的学习对于研究其他圆锥曲线有示范作用。(2)曲线与方程之间对立与统一的关系正是“对立统一”的哲学观点在教学中的体现。                     五、布置作业 (第127页2、3、4题) 

  yxor七、板书设计 一、                     二、

圆的标准方程 篇4

  各位专家:

  您好!我叫陆威,来自江苏省宿迁中学,今天我说课的课题是“椭圆的标准方程”,下面我从教材分析、教法设计、学法设计、学情分析、教学程序、板书设计和评价设计等七个方面向各位阐述我对本节课的构思与设计。

  一、教材分析

  1、地位及作用

  圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。

  推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,为学习双曲线、抛物线内容提供了基本模式和理论基础。因此本节课具有承前启后的作用,是本章的重点内容。

  2、教学内容与教材处理

  椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我将以课堂教学的组织者、引导者、合作者的身份,组织学生动手实验、归纳猜想、推理验证,引导学生逐个突破难点,自主完成问题,使学生通过各种数学活动,掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

  3、教学目标

  根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

  1.知识目标

  ①建立直角坐标系,根据椭圆的定义建立椭圆的标准方程,

  ②能根据已知条件求椭圆的标准方程,

  ③进一步感受曲线方程的概念,了解建立曲线方程的基本方法,体会数形结合的数学思想。

  2.能力目标

  ①让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力,

  ②培养学生的观察能力、归纳能力、探索发现能力,

  ③提高运用坐标法解决几何问题的能力及运算能力。

  3.情感目标

  ①亲身经历椭圆标准方程的获得过程,感受数学美的熏陶,

  ②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,

  ③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

  4、重点难点

  基于以上分析,我将本课的教学重点、难点确定为:

  ①重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法,

  ②难点:椭圆的标准方程的推导。

  二、教法设计

  在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。

  三、学法设计

  通过创设情境,充分调动学生已有的学习经验,让学生经历“观察——猜想——证明——应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

  四、学情分析

  1.能力分析

  ①学生已初步掌握用坐标法研究直线和圆的方程,

  ②对含有两个根式方程的化简能力薄弱。

  2.认知分析

  ①学生已初步熟悉求曲线方程的基本步骤,

  ②学生已经掌握直线和圆的方程及圆锥曲线的概念,对曲线的方程的概念有一定的了解,

  ③学生已经初步掌握研究直线和圆的基本方法。

  3.情感分析

  学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。

  五、教学程序

  从建构主义的角度来看,数学学习是指学生自己建构数学知识的活动,在数学活动过程中,学生与教材及教师产生交互作用,形成了数学知识、技能和能力,发展了情感态度和思维品质。基于这一理论,我把这一节课的教学程序分成六个步骤来进行。

圆的标准方程 篇5

  1。教学目标

  (1)知识目标: 1。在平面直角坐标系中,探索并掌握圆的标准方程;

  2。会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

  (2)能力目标: 1。进一步培养学生用解析法研究几何问题的能力;

  2。使学生加深对数形结合思想和待定系数法的理解;

  3。增强学生用数学的意识。

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

  2。教学重点。难点

  (1)教学重点:圆的标准方程的求法及其应用。

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题。

  3。教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2。7代入,得 。

  即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1。根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2。如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={MMC=r}

  由两点间的距离公式,点M适合的条件可表示为 ①

  把①式两边平方,得(x?a)2 (y?b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

圆的标准方程 篇6

  【一】教学背景分析

  1.教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

  2.学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3.教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题.

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识.

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣.

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4. 教学重点与难点

  (1)重点:圆的标准方程的求法及其应用.

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题.

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  【二】教法学法分析

  1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.

  2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.

  下面我就对具体的教学过程和设计加以说明:

  【三】教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图.

  首先:纵向叙述教学过程

  (一)创设情境――启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知――求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.

  (二)深入探究――获得新知

  问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2.如果圆心在,半径为时又如何呢?

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.

  (三)应用举例――巩固提高

  I.直接应用 内化新知

  问题三 1.写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点.

  2.写出圆的圆心坐标和半径.

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.

  II.灵活应用 提升能力

  问题四 1.求以点为圆心,并且和直线相切的圆的方程.

  2.求过点,圆心在直线上且与轴相切的圆的方程.

  3.已知圆的方程为,求过圆上一点的切线方程.

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.

  III.实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.

  (四)反馈训练――形成方法

  问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.

  2.求圆过点的切线方程.

  3.求圆过点的切线方程.

  接下来是第四环节――反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.

  (五)小结反思――拓展引申

  1.课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法

  ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:.

  ②已知圆的方程是,经过圆上一点的切线的方程是:.

  2.分层作业

  (A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.

  3.激发新疑

  问题七 1.把圆的标准方程展开后是什么形式?

  2.方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:

  横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题――问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.

圆的标准方程 篇7

  教学目标:(一)、知识与技能:理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。(二)、过程与方法:让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题。(三)、情感态度与价值观:通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度。教学重点:椭圆的标准方程教学难点:椭圆标准方程的推导教学过程:(一)、问题情境:生活中存在着大量的椭圆,比如:餐桌问题1:汽车贮油罐的横截面的外轮廓线的形状是椭圆,怎样设计才能精确地制造它们?问题2:把一个圆压扁了,像一个椭圆,它究竟是不是椭圆?问题3:电影放映机上的聚光灯泡的反射镜、运用高能冲击波击碎肾结石的碎石机等仪器设备都是运用椭圆的性质制造的。怎样才能准确地制造它们?学生回忆椭圆的定义:平面内到两定点f1、f2距离之和等于常数(大于f1f2)的点的轨迹叫做椭圆,两定点f1、f2叫做椭圆的焦点,两定点间的距离叫做焦距.注:满足几个条件的动点的轨迹叫做椭圆?(1)平面内;若把平面内去掉,则轨迹是什么?(2)椭圆上的点到两个焦点的距离之和为常数;记为2a;两焦点之间的距离称为焦距,记为2c,即: =2c.(3)常数 ,若 ,则轨迹是什么?若 呢?(二)师生探究:1、回顾求圆的标准方程的基本步骤建立坐标系、设点、找等量关系、代入坐标、化简2、如何建立适当的坐标系?原则:尽可能使方程的形式简单、运算简单  (一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴。)①建立适当的直角坐标系:建立直角坐标系xoy,使x轴经过点 ,并且o与线段 的中点重合②设点:设 是椭圆上任意一点,椭圆的焦距为 ,那么焦点 的坐标分别为 .又设m与 的距离之和等于常数 yf2opf1③根据条件 得 所以得: x④化简:整理得: 由椭圆的定义可知: 令 ,其中 ,代入上式整理得: 思考:怎样推导焦点在y轴上的椭圆的标准方程?问题1:椭圆标准方程的特点是什么?问题2: 如何判断椭圆焦点位置?

  椭圆的定义

  平面内到两个定点 的距离的和等于常数(大于 )的点的轨迹。

  图形

  标准方程

  焦点坐标

  a,b,c的关系

  焦点位置的判断

  分母哪个大,焦点就在哪个轴上(三)学生活动一、基础训练1、若动点p到两定点f1(-4,0),f2(4,0)的距离之和为8,则动点p的轨迹为(  b )  a. 椭圆        b. 线段f1f2  c. 直线f1f2     d. 不存在2、求下列椭圆的焦点坐标1、   2、   3、   4、 3、已知椭圆的方程为 ,则     ,     ,     ,焦点坐标为:          ,焦距为        如果曲线上一点p到焦点 的距离为8,则点p到另一个焦点 的距离等于          。二、例题讲解例1、求适合下列条件的椭圆方程  (1)a=4,b=3,焦点在x轴上;(2)b=1,  ,焦点在y轴上;(3)若椭圆满足: , ,焦点在x轴上,求它的标准方程;变:若把焦点在x轴上去掉呢?   (4)两个焦点分别是 ,且经过 ;(5)已知椭圆经过 两点,求它的标准方程;解答:(1)      (2)      (3) ,题:      (4)       (5) 反思研究:(1)求椭圆方程的步骤:1.定型,2.定位,3.定量         (2)椭圆的标准方程可统一成 例2、已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆,它的焦距为 m,外轮廓线上的点到两个焦点之和为3m,求这个椭圆的标准方程。解:以两焦点 所在直线为 轴,线段 的垂直平分线为 轴,建立直角坐标系 ,则这个椭圆的标准方程为 根据题意知 ,所以 因此,这个椭圆的标准方程为: 课堂小结:这节课我们学习了椭圆的标准方程,掌握了求焦点在x轴上和在y轴上的标准方程,求标准方程常用的方法:待定系数法,坐标转移法;有时还需要数形结合、分类讨论等思想。作业布置教材p30页习题2.2第2,3,4,5题课后作业:创新作业

圆的标准方程 篇8

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的.已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(xa)2 (yb)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

圆的标准方程 篇9

  圆的标准方程是高中数学的一个重要知识点,下面小编为大家搜集的一篇“高二数学说课稿《圆的标准方程》”,供大家参考借鉴,希望可以帮助到有需要的朋友!

  1.教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

  2.学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3.教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题.

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识.

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣.

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4. 教学重点与难点

  (1)重点:圆的标准方程的求法及其应用.

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题.

圆的标准方程 篇10

  教学目标:

  1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

  2、会用待定系数法求圆的标准方程。

  教学重点:圆的标准方程

  教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

  教学过程:

  (一)、情境设置:

  在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

  化简可得:②

  引导学生自己证明为圆的方程,得出结论。

  方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

  (三)、知识应用与解题研究

  例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

  分析探求:可以从计算点到圆心的距离入手。

  探究:点与圆的关系的判断方法:

  (1)>,点在圆外

  (2)=,点在圆上

  (3)<,点在圆内

  解:

  例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

  师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

  解:

  例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

  师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

  解:

  总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

  1、根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程。

  ②根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

  (四)、课堂练习(课本P120练习1,2,3,4)

  归纳小结:

  1、圆的标准方程。

  2、点与圆的位置关系的判断方法。

  3、根据已知条件求圆的标准方程的方法。

  作业布置:课本习题4。1A组第2,3,4题。

  课后记:

圆的标准方程 篇11

  “说课”有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。下面是小编为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!

  高中数学说课稿:《圆的标准方程》

  【一】教学背景分析

  1.教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

  2.学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3.教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题.

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识.

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣.

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4. 教学重点与难点

  (1)重点:圆的标准方程的求法及其应用.

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题.

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  【二】教法学法分析

  1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.

  2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.

  下面我就对具体的教学过程和设计加以说明:

  【三】教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图.

  首先:纵向叙述教学过程

  (一)创设情境——启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.

  (二)深入探究——获得新知

  问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2.如果圆心在,半径为时又如何呢?

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.

  (三)应用举例——巩固提高

  I.直接应用 内化新知

  问题三 1.写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点.

  2.写出圆的圆心坐标和半径.

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.

  II.灵活应用 提升能力

  问题四 1.求以点为圆心,并且和直线相切的圆的方程.

  2.求过点,圆心在直线上且与轴相切的圆的方程.

  3.已知圆的方程为,求过圆上一点的切线方程.

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.

  III.实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.

  (四)反馈训练——形成方法

  问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.

  2.求圆过点的切线方程.

  3.求圆过点的切线方程.

  接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.

  (五)小结反思——拓展引申

  1.课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法

  ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:.

  ②已知圆的方程是,经过圆上一点的切线的方程是:.

  2.分层作业

  (A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.

  3.激发新疑

  问题七 1.把圆的标准方程展开后是什么形式?

  2.方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:

  横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.

圆的标准方程 篇12

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(xa)2 (yb)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

  (五)小结反思(拓展引申)

  1.课堂小结:

  (1)圆心为c(a,b),半径为r 的圆的标准方程为:

  当圆心在原点时,圆的标准方程为:

  (2) 求圆的方程的方法:①找出圆心和半径;②待定系数法

  (3) 已知圆的方程是 ,经过圆上一点 的切线的方程是:

  (4) 求解应用问题的一般方法

  2.分层作业:(a)巩固型作业:课本p81-82:(习题7.6)1.2.4

  (b)思维拓展型作业:

  试推导过圆 上一点 的切线方程.

  3.激发新疑:

  问题七:1.把圆的标准方程展开后是什么形式?

  2.方程: 的曲线是什么图形?

  教学设计说明

  圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.

  本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力、培养了

  文章来源自3edu教育网兴趣、增强了信心

圆的标准方程 篇13

  教学目标:

  1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

  2、会用待定系数法求圆的标准方程。

  教学重点:圆的标准方程

  教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

  教学过程:

  (一)、情境设置:

  在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

  化简可得:②

  引导学生自己证明为圆的方程,得出结论。

  方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

  (三)、知识应用与解题研究

  例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

  分析探求:可以从计算点到圆心的距离入手。

  探究:点与圆的关系的判断方法:

  (1)>,点在圆外

  (2)=,点在圆上

  (3)0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的长度约为3.86M。

  Ⅳ.课堂练习、课时小结

  课本P77练习2,3

  师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

  Ⅴ.问题延伸、课后作业

  (一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,?求过P点的圆的切线方程。

  课本P81习题7.7 : 1,2,3,4

  (二)预习课本P77~P79

221381
领取福利

微信扫码领取福利

圆的标准方程(通用13篇)

微信扫码分享